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Abstract—Extensive academic effort has been put into the
development of effective machine learning models that block
advertising and tracking service (ATS) content. These ATS
blockers leverage various features from websites, such as
structural, content, flow, and JavaScript features, to develop ac-
curate and robust models. However, establishing the robustness
of these ATS blockers to evasion attacks is largely understud-
ied, particularly in practical scenarios in which an adversary
generates a single and cost-effective universal perturbation that
renders ATS detection across websites ineffective at scale.

In this paper, we show that recent ATS blockers using ma-
chine learning are not robust to a universal adversarial attack.
Specifically, we propose an auditing framework (YOPO) that
enables one to generate a single adversarial perturbation in
a cost-effective manner. Our framework casts the generation
of a universal perturbation into an optimization problem in a
principled way; it enables an adversary to minimize the cost of
manipulating various features in HTML content and to thwart
ATS classification while constraining the perturbation size for
each feature. We demonstrate that YOPO is capable of gen-
erating a universal perturbation that enables bypassing four
seminal ATS blockers: ADGRAPH, WEBGRAPH, ADFLUSH,
and PageGraph, attaining success rates of up to 92.27%,
71.50%, 61.91%, and 85.81%, respectively. We also propose
a practical and effective countermeasure against YOPO that
only requires preprocessing training instances without large
performance drops in ATS blocking.

1. Introduction

Advertising and tracking service (ATS) providers are
renowned for tracking Internet users via various vectors [16],
such as third-party cookies [21, 26, 34], first-party cook-
ies [24, 50], device fingerprinting [47, 51], cache-based
tracking [40, 59], and cross-device tracking [48, 62, 66].
They monetize users’ browsing trajectories across websites
by compiling their profiles to serve personalized ads [20].

For this privacy threat, ATS blocking services provide an
effective way to prevent such ATS providers from tracking
Internet users by blocking ATS resources. ATS blocking has
contributed to improving the privacy of Internet users [18,
31, 33, 44, 46] and improving browsing performance [32,
55]. AdBlock, a notable ad-blocking extension, has over 65
million daily users, demonstrating its wide prevalence [3].

Recent studies have focused on developing ATS blockers
by leveraging machine learning (ML) [30, 37, 38, 50, 56,
63, 64]. They have proposed effective features for ATS
classification and improved robustness to evasion efforts.
These improvements typically come from engineering new
features that an adversary may not easily perturb and de-
ploying ML models that leverage these robust features. For
example, ADGRAPH [37] proposes features that encode
how web resources are rendered in browsers by leverag-
ing graph representations and achieves state-of-the-art ad-
blocking performance. Siby et al. [56] present WEBGRAPH,
which improves the robustness of ADGRAPH against eva-
sion attacks by employing information flow features. A
recent work by Lee et al. [43] introduces ADFLUSH, a high-
performing real-time ATS classifier.

However, these ATS blockers examine their robustness
against adversaries with limited capabilities. WEBGRAPH
assumes a limited-capability adversary unable to easily ma-
nipulate the proposed flow features; ADFLUSH does not
address the threat posed by adversarial examples artificially
crafted through perturbing multiple features together.

In this paper, we challenge this assumption of the adver-
sary’s limitation and study the vulnerability of ATS blockers
to evasion attacks. Specifically, we ask the question: how
can an adversary craft a single, cost-effective perturbation
applicable to multiple websites for evading ATS blockers?
Unlike a few studies [56, 65] that test robustness to evasion
attacks, by crafting adversarial perturbations tailored to in-
dividual websites, we focus on devising a practical attack
scalable to millions of ads. This question is important from a
security perspective, as successful attacks expose a common
vulnerability in existing ATS blockers, even if their features
are designed to provide better accuracy and robustness.

To answer the question above, we develop a novel
framework (You Only Perturb Once: YOPO) that generates
a universal adversarial perturbation (UAP) against a target
ATS blocker. We manifest three challenges in generating
a cost-effective UAP. (1) One cannot simply adapt the
gradient-based techniques proposed by prior work [45], as
ATS blockers employ discrete features, such as categorical
and/or binary features. (2) In practical scenarios, an ad-
versary should prioritize manipulating specific features to
minimize the engineering cost of implementing perturbed
features in HTML. Changing HTML tags, introducing ex-
tensively repetitive tags, or deleting existing DOM elements
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can disrupt the functionality or proper display of a webpage.
(3) The UAPs that our attacker exploits should be reflected
in an HTML format while preserving the functionality of a
target webpage.

To overcome these key challenges, we propose novel
techniques for generating a single, cost-effective UAP. We
formulate the UAP crafting process as an optimization
problem and solve this problem using projected gradient
descent (PGD) [45]. We devise a series of update functions
that convert categorical and binary features into numerical
vector representations, as well as reflect numerical feature
changes in the discrete features. This enables numerical
gradients to be reflected on each input feature through our
update functions, thus addressing the first challenge. For
the second challenge, we define a cost model that prioritizes
which features to manipulate first in generating a UAP. This
model is integrated into our objective function, which guides
YOPO to compose a cost-effective and imperceptible UAP
for the adversary to inject. Lastly, we implement a series
of HTML update functions that apply a total of 46 feature
changes to a target HTML webpage, thus addressing the
third challenge.

We comprehensively evaluate our universal adversar-
ial attacks against four seminal ATS blockers: ADGRAPH,
WEBGRAPH, ADFLUSH, and PageGraph. YOPO achieves
high attack success rates of 92.27%, 71.50%, 61.91%, and
85.81% against these blockers, respectively. Our attack is
practical and cost-effective, requiring only 32.42 seconds to
generate a UAP, which is a one-time procedure. We also
analyze 400 webpages manipulated by YOPO and demon-
strate that our HTML manipulation incurs functionality dis-
ruptions against only 14 webpages. Moreover, we investigate
the factors that result in this common vulnerability and find
that it mainly stems from the imbalanced distribution of
binary and categorical features in the training data.

Based on our findings, we finally propose two feature
engineering-based mitigation strategies that exploit the im-
balanced feature distribution in the training set. Employing
our strategies reduces the attack success rates to 40.41%,
48.55%, 42.74%, and 64.51% against ADGRAPH, WE-
BGRAPH, ADFLUSH, and PageGraph, respectively, while
preserving the accuracy of these blockers.

2. Related Work

2.1. ATS Blocking

Blocklist-based ATS blocking. Leveraging blocklists is a
classic approach to preventing ad service providers and
publishers from tracking Internet users. These blocklists are
manually maintained by trusted ATS blocking vendors. They
contain a collection of regular expressions and keywords that
match the URLs of network requests and HTML elements
that fetch ATS resources. Once matched, browsers prevent
fetching these resources [7]–[9]. However, this approach
has limitations. It takes time to add new URL patterns to
blocklists as their maintenance typically relies on crowd-
sourced reports [58]. Prior studies have also demonstrated

a series of successful evasion attempts, such as domain
rotation [2], domain generation [54], and collusion between
first- and third-party websites [56, 65]. These limitations
render the blocklist-based approach ineffective in keeping
up with evolving ATS techniques [46].
ML-aided ATS blocking. Recent proposals have employed
ML models for ATS blocking [14, 30, 37, 38, 50, 56, 63,
64]. Previous studies explored various ML algorithms that
examine visual content, such as website screenshots [14, 30].
While they have shown effectiveness, focusing solely on
visual (or perceptual) content may allow an attacker to add
human-imperceptible perturbations to websites for evasion.

To address this shortcoming, the latest ATS block-
ers [37, 43, 56, 58] employ new features that are carefully
engineered from the graph representation of a webpage. The
hope is that it will be more difficult for an adversary to
manipulate these new features to evade ATS blocking.

For instance, ADGRAPH [37] constructs a graph rep-
resentation of a webpage. Graph nodes represent HTML
elements or network requests, and edges encode the order
in which a webpage loads these elements, such as parent-
child relationships between the HTML elements or how the
webpage initiates network requests (e.g., iframes, images,
styles, and JavaScript code). For each network request node,
ADGRAPH extracts structural and content features and trains
a random forest classifier using the extracted features. Dur-
ing inference, the trained classifier identifies whether a given
network request is related to ATS or not. PageGraph [58]
improved upon ADGRAPH by leveraging both perceptual
features extracted from an image classifier and contextual
features extracted from the webpage’s graph representation.

WEBGRAPH [56] proposed using additional informa-
tion flow features that encode the dynamic behavior of a
webpage (e.g., reading/writing cookies), providing improved
robustness to evasion attacks that manipulate structural and
content features, such as mutating the graph representation
of a webpage or the request URLs. Lee et al. [43] carefully
analyzed the effectiveness of 883 features proposed in prior
works [37, 56, 64] and selected 27 features for superior
ATS classification over ADGRAPH and WEBGRAPH. These
approaches are highly effective, attaining high accuracy (92–
96%) in ATS blocking.

2.2. (Universal) Adversarial Attacks

Deep neural networks (DNNs) are known to be sensitive
to small input changes [60]. Numerous studies [15, 22, 23,
41, 45, 52, 60] have demonstrated that an adversary can
exploit this sensitivity to fool a model’s decision by adding
human-imperceptible perturbations to a test-time sample.
The objective of the adversarial example-crafting process is
to find the human-imperceptible perturbation δ that, when
added to the test-time sample x of an adversary’s interest,
maximizes the loss with respect to the correct label, formally
as follows:

argmax
|δ|≤ε

L(θ, x+ δ, y), (1)
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where θ is the model parameters of a target model f , y is the
true label, L is the loss function (typically, the cross-entropy
loss), and ϵ is the maximum perturbation magnitude.

Many optimization approaches have been proposed to
find such δ [22, 45]. One representative approach is pro-
jected gradient descent (PGD) [45]. In PGD, the attacker
crafts an adversarial example (i.e., x+ δ) as follows:

xt+1 = Πϵ

(
xt + α · sign

(
∇xL

(
θ, xt, y)

))
, (2)

where xt is the adversarial example generated at step t, α is
the step size, and Πϵ is the projection operator that enforces
the constraints on the perturbation size by clipping δ so that
it falls within the ℓp ball around the original input x. We
take the intuition from these studies and utilize PGD in our
adversarial example-crafting process.
Universal adversarial perturbation (UAP). Moosavi-
Dezfooli et al. introduced the concept of UAP [49]: an
adversary crafts a single perturbation δ that can fool the
target model’s classification when added to multiple test-
time samples. UAP is useful when a defender wants to audit
whether a target classifier has a common vulnerability that
an adversary can exploit to launch large-scale adversarial
attacks. In particular, an adversary certainly prioritizes UAP
over per-sample adversarial attacks in web-specific settings.

Unfortunately, it has not yet been shown whether an
adversary can craft a universal manipulation of HTML
elements that allows multiple ads to bypass ATS blockers.
Prior work closest to ours is the UAP against perceptual
ad-blockers, presented by Tramèr et al. [61]. However, this
involved a straightforward adaptation of an existing UAP
in image domains to perceptual ad-blocking, which is not
applicable to crafting a UAP against state-of-the-art ATS
blockers that leverage categorical and binary features. Per-
sample adversarial attacks have been demonstrated against
a single ATS blocker [65], while it still remains unknown
whether other ATS blockers have a common vulnerability.
Our work bridges this gap between the two lines of work by
providing an auditing framework (YOPO) and exploitation
in practical web settings.

3. Problem Statement

Recent advances in ATS blockers using ML have moti-
vated ATS providers and publishers to seek ways of bypass-
ing these blockers, thus securing their monetization chan-
nels. A few studies [43, 56, 65] have evaluated the robust-
ness of recently proposed ATS blockers by performing ad-
versarial attacks. However, we argue that these studies have
not evaluated their robustness to the fullest extent in terms
of the adversary’s capability and scalability. Siby et al. [56]
assume that the adversary is unable to manipulate flow
features. Lee et al. [43] only evaluate whether applying
random URL manipulations or JS obfuscation can bypass
ATS blockers.

Zhu et al. [65] propose A4 that generates adversarial ex-
amples in a per-sample manner, which is not scalable to real-
world websites. In our preliminary study using 2,000 ATS

network request nodes randomly sampled from Tranco’s
Top-10K websites, A4 took 13.91 minutes on average to
compute adversarial perturbation against one ATS-related
request node and to reflect the computed perturbation onto
the webpage. Note that A4 is designed to optimize adversar-
ial perturbation against a single network request node; thus,
the computed perturbation cannot alter the classification
result when applied to other request nodes. Considering
that a webpage usually includes multiple ATS-related web
resources (e.g., 8.60 ATS requests per webpage in our
dataset) and that abusive ATS providers aim to deploy their
service at scale, we believe that such an instance-specific
attack is impractical and resource-intensive.

As an alternative, UAP is applicable to generating a
single perturbation that enables ATS resources to be misclas-
sified as non-ATS ones when applied to multiple network
request nodes. In this regard, we seek to answer research
questions regarding the generation of a single, cost-effective
perturbation applicable to multiple websites. To the best
of our knowledge, no previous study has investigated the
feasibility of computing UAPs for either ATS classifiers or
the critical threat that such perturbations pose.

3.1. Threat Model

Goal. We consider an adversary who crafts a UAP that
enables multiple ads (or tracking services) to evade a target
ATS blocker. These adversaries could be ATS providers—
or even publishers—who are incentivized to evade the ATS
blocker. Upon successful evasion, the attacker can render ads
on multiple websites in their advertising networks. These
attackers are also motivated to minimize their perturbations.
By introducing such negligible changes, they can preserve
the original functionalities as well as the visual elements of
a target webpage [56].
Capabilities. Our adversary has black-box access to a target
ATS blocker. We assume that the attacker does not know the
ML algorithm that the ATS blocker employs or its training
data. Because ATS blockers often utilize models that only
provide hard labels, we assume that the attacker only has
access to the hard labels of test-time instances, rendering
the challenging label-only attack scenario [25, 35].

Our attacker also has query access to the target ATS
blocker and uses this interface to construct data for training a
surrogate model. The attacker uses (or alters) ATS resources
available from the Internet for data construction. Note that
we consider an ATS provider who colludes with an ATS
publisher as our adversaries. These adversaries can manipu-
late all structural, content, flow, and JavaScript (JS) features
in Table 1. For instance, since the URLs of ATS request
nodes are under the ATS provider’s control, the provider is
able to modify content features, such as URL length or the
presence of ad-related keywords in the URL. However, we
do not allow our attacker to change the domain name to
the first-party domain. Although such manipulation signif-
icantly eases bypassing ATS blockers, it requires CNAME
cloaking [29], which is typically beyond the ATS provider’s
control; the number of domains using CNAME cloaking
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Figure 1: Illustration that shows how YOPO generates UAPs against a target ATS blocker.

accounted for only 0.58% of the Alexa Top-300K websites
collected in 2020 [27]. To manipulate flow and JS features,
the ATS provider can append a JS snippet that affects such
features when providing ATS-related JS code.

3.2. Challenges in Crafting UAPs

We lay out three key challenges in generating UAPs.
Perturbing binary or categorical features. Many ATS
blockers [36, 50, 56] leverage different types of features,
such as binary and categorical features. Conventional ad-
versarial attacks assume that the features they are perturbing
are numerical, which allows a straightforward adoption of
backward propagation for computing adversarial examples.
However, such adversarial example-crafting techniques do
not apply to discrete features, such as binary and categorical
ones. To manipulate discrete features, we need a set of
unique mapping functions that define how an adversary will
reflect the numerical changes in feature values computed
using our optimization approach to the actual binary and
categorical feature values.
Injection cost. Our attacker needs to inject the perturbation
that our framework generates; however, for some features,
their manipulation, such as changing HTML tags or remov-
ing HTML elements, can impact users’ browsing experience.
If the attack affects the user experience or disrupts the
original website’s functionalities, this also reduces the adver-
sary’s revenue due to users leaving their websites [17, 28].
To minimize such shortcomings, it is important to consider
how an adversary will prioritize perturbing each feature in
UAP crafting. This prioritization will be performed based on
a predefined cost model. We design a cost model based on
how visually imperceptible a feature’s perturbation is and
how much the perturbation disrupts the original website’s
functionality.
Manipulating HTML elements. Ensuring that the target
website correctly reflects the numerical perturbations that
our framework computes poses a distinct challenge. Other-
wise, our attack may not bypass the target ATS blocker when
applied to the target website. It is also important for the

attacker to achieve stealthiness as a victim may employ hu-
man curators who can detect and remove visually abnormal
HTML manipulations before hosting [53]. We thus need an
HTML manipulator that ensures our UAP is inconspicuous
at the HTML level while retaining its effectiveness.

4. You Only Perturb Once

We present YOPO, a framework for auditing the vul-
nerability of a target ATS blocker to universal adversarial
attacks. Figure 1 shows the YOPO workflow. Given a target
ATS blocker, YOPO conducts Phase I, a one-time prepara-
tion step that crafts a UAP. In Phase II, YOPO applies the
UAP to ATS requests on a given webpage.
Phase I: Generating a UAP. YOPO constructs training
data for a surrogate model (§4.1), trains the surrogate
on the constructed data (§4.2), and crafts a UAP (§4.3).
Specifically, the framework starts by collecting websites by
crawling the Internet. It then transforms these websites into
the format used by a target classifier and feeds them to
collect the classifier’s predictions (i.e., hard labels). YOPO
trains a surrogate model on the collected data. Finally, the
framework crafts a UAP based on a subset of collected ATS
samples. In crafting, YOPO leverages the cost model that
we define in our objective function so that the adversary can
minimize the cost of deploying the UAP.
Phase II: Performing adversarial attacks. Now, the ad-
versary conducts (universal) adversarial attacks for each
network request node responsible for fetching ATS resources
on a publisher’s webpage (§4.4). YOPO starts by feeding
each ATS request node into YOPO along with the webpage.
To each request on the webpage, YOPO applies the UAP
by altering the DOM structure around the request. When
this request fetches a JS file, YOPO also supports adding
a JS snippet that introduces feature changes regarding the
request. This manipulation step modifies the website’s load-
ing context of ad resources, thus enabling it to bypass the
target ATS blocker.
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4.1. Generating Training Data for the Surrogate

YOPO’s first step is to construct a dataset for training
a surrogate model. Given a set of URLs, YOPO visits each
one and converts the webpage into a set of features. In our
attacks against ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, we first transform the webpage into a graph
representation that captures the hierarchical loading context
of various HTML/JS elements. To perform this conversion,
YOPO leverages the revised Chromium binary [37] for
ADGRAPH. It also uses OpenWPM [31] for WEBGRAPH
and ADFLUSH. For PageGraph, the native Brave browser
supports this conversion process [6, 19].

Consider the following HTML snippet as an example:
1 <body>
2 <script src="http://assets.adnetwork.com/js/ad_30x25.js">
3 </body>

This HTML snippet initiates a network request that fetches
JS code from an ad network. Given this snippet, ADGRAPH
generates the following graph representation:
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The first and second HTML nodes of this representation
correspond to the <body> and the <script> tags in the
HTML snippet, respectively. The <script> tag then creates
a script node, and it finally appends a network request node.

YOPO identifies such network request nodes (i.e., ver-
tices) within each graph representation. These network re-
quest nodes are from image, script, and iframe HTML
elements that fetch remote resources. For each request node,
YOPO extracts features, which serve as an input of the tar-
get classifier. For instance, from the example above, YOPO
extracts the following features (a subset of ADGRAPH’s
features):
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The first two structural features represent the number of
nodes and edges in the entire graph, indicating that this
graph has four nodes and three edges. The last two content
features indicate that the URL length of this network request
is 42, and the URL does not have a semicolon. YOPO
extracts 65, 75, 27, and 15 features for ADGRAPH, WE-
BGRAPH, ADFLUSH, and PageGraph, respectively.

Using these features, YOPO composes a query instance,
queries this instance to the target model, and obtains its hard
label, as shown in the following example:

HTML
body

HTML
script

Script
node

Network
request

…

NUM_NODES NUM_EDGES URL_LENGTH SEMICOLON_IN_URL
FALSE4 3 42

NUM_NODES NUM_EDGES URL_LENGTH SEMICOLON_IN_URL Label
ATSFALSE4 3 42

NUM_NODES NUM_EDGES URL_LENGTH SEMICOLON_IN_URL_T
04 3 42

SEMICOLON_IN_URL_F
1

NUM_NODES NUM_EDGES URL_LENGTH SEMICOLON_IN_URL_T Label
ATS04 3 42

SEMICOLON_IN_URL_F
1

# of Nodes # of Edges URL Length Semicolon_T
1+10 +4 +9

Semicolon_F
0

# of Nodes # of Edges URL Length
+25 +4 +9

# of Nodes # of Edges URL Length
+10 +4 +9

Semicolon_T
1

Semicolon_F
0

Semicolon_T
0.856

Semicolon_F
0.144

# of Nodes # of Edges URL Length Semicolon_T
151 44 51

Semicolon_F
0

Note that YOPO only requires black-box access to the
target classifier (as discussed in §3.1). Against this black-
box adversary with query access, ATS blockers may employ
defense strategies (e.g., rate-limiting). However, most ATS
blockers are offered as client-side browser extensions, which
allows the attacker to send an arbitrary (or even unlimited)
number of queries to them [3, 11, 13].

4.2. Training the Surrogate Model

The next step is to train a surrogate model on the training
data collected in §4.1. We formally define this process as
follows: Given a target classifier f(θ, x) → ŷ (e.g., a random
forest model) that produces a prediction vector ŷ for a given
query instance x, where θ represents the weight parameters
of f . With black-box access to this target classifier, YOPO
trains a surrogate model f ′(θ′, x′) → ŷ′ that replicates the
decision boundary of f as closely as possible. This step is
similar to that in model extraction attacks [61], known to
perform well with a model’s confidence values. However,
we are in a more challenging setting in which the adversary
only has access to hard labels.

Through empirical trials, we find that a deep neural
network (DNN) serves as a good surrogate. It achieves
the highest attack success rates among other surrogates
and enables the efficient computation of gradients in the
UAP crafting process. Specifically, we use a four-layer feed-
forward network for the architecture of our surrogate model.

The input vector x of f often includes binary and
categorical features; thus, we cannot directly optimize across
these discrete values. To ease the optimization process, we
expand the dimension of the original input vector x when
constructing the surrogate model f ′ by using one-hot encod-
ing. Each binary feature thus becomes a two-dimensional
vector, and each categorical feature becomes a k-
dimensional vector, where k equals the number of its possi-
ble categories. For example, since the SEMICOLON IN URL
feature is a binary feature, we expand this feature’s dimen-
sion by splitting it into the SEMICOLON IN URL TRUE and
SEMICOLON IN URL FALSE features, as follows:
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4.3. Crafting UAPs

YOPO computes a UAP δ, which induces the mis-
classification of multiple ATS request nodes into non-ATS
requests against the surrogate model f ′. For this, YOPO
samples ATS data instances, compiling a set Dad. Our
framework optimizes δ across Dad.
Objective function. The goal of the adversary is two-fold:
(1) a UAP δ should elicit the classification of a given ATS
request as non-ATS, and (2) δ should incur the minimum
cost in introducing it to the target webpage. To achieve this
goal, we define the objective function F (δ) and search for
δ that minimizes this objective function while enforcing the
feature constraint (i.e., ||δ||∞ ≤ ϵ), as shown in Eq 3.

min
δ

F (δ) subject to ||δ||∞ ≤ ϵ (3)

In Eq 4, the objective function F has two terms, each
reflecting one of the adversary’s two goals. λ is a hyper-
parameter that strikes a balance between the two terms.
The first term refers to an adversarial loss: the expected
risk of cross entropy loss (i.e., LCE) between the model’s
prediction for each perturbed input f ′(θ, x + δ) and its
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TABLE 1: List of features that YOPO perturbs and their perturbation injection costs against four ATS blockers: ADGRAPH
(AG), WEBGRAPH (WG), ADFLUSH (AF), and PageGraph (PG). ✓ and ✗ denote whether each ATS blocker employs the
corresponding feature for ATS classification.

Feature
Type Category Perturbation AG WG AF PG Assigned

Cost

Structural

Numerical

Increase the graph size (NUM NODES, NUM EDGES) ✓ ✓ ✗ ✗ 0.1
Increase the node degree (NUM OUT, NUM IN OUT) ✓ ✓ ✗ ✓ 0.1
Increase the inbound node degree (NUM IN) ✗ ✗ ✗ ✓ 0.1
Increase the number of siblings (NUM SIBLINGS, NUM PARENT SIBLINGS) ✓ ✗ ✗ ✗ 0.1
Increase the parent’s node degree (NUM PARENT IN, NUM PARENT OUT, NUM PARENT IN OUT) ✓ ✗ ✗ ✓ 2
Increase / Decrease the average degree connectivity (AVG DEGREE) ✓ ✓ ✗ ✓ 3

Modify the attribute using a script (MOD BY SCRIPT) ✗ ✗ ✗ ✓ 2

Binary

Add / Remove the parent’s attribute (PARENT ASYNC, PARENT DEFER) ✓ ✗ ✗ ✗ 2
Add the parent’s attribute using a script (PARENT ADD BY SCRIPT) ✓ ✗ ✗ ✗ 2
Modify the parent’s attribute using a script (PARENT MOD BY SCRIPT) ✓ ✗ ✗ ✓ 2
Remove the ascendant nodes’ ad-related keywords (REMOVE ASCENDANT AD KEYWORD) ✓ ✓ ✗ ✗ 3
Remove the parent’s sibling nodes’ ad-related keywords (REMOVE SIBLING AD KEYWORD) ✓ ✗ ✗ ✗ 3

Categorical Modify the first parent’s tag name (PARENT TAG NAME) ✓ ✗ ✗ ✗ 3

Content

Numerical Increase / Decrease the URL length (URL LENGTH) ✓ ✓ ✓ ✓ 0.2

Binary

Add / Remove a semicolon in the URL (SEMICOLON IN URL) ✓ ✓ ✗ ✓ 1
Add / Remove a base domain in the URL query string (DOMAIN IN QS) ✓ ✓ ✗ ✗ 1
Add / Remove screen dimension keywords in the URL query string (SCREEN IN QS) ✓ ✓ ✗ ✗ 2
Make the URL valid / invalid (VALID URL) ✓ ✓ ✗ ✗ 2
Add / Remove ad-related keywords (e.g., ‘ads’ and ‘banner’) in the URL (AD KEYWORD IN URL) ✓ ✓ ✓ ✗ 3
Add / Remove special characters (e.g., ‘&’, ‘/’, and ‘=’) in the URL (SPECIAL CHAR IN URL) ✓ ✓ ✗ ✗ 3
Add / Remove size keywords (SIZE KEYWORD IN URL, SIZE KEYWORD IN QS) ✓ ✓ ✗ ✗ 3

Flow Numerical

Increase the flow graph’s node degree (FLOW OUT) ✗ ✓ ✗ ✗ 1
Increase the number of sent requests (NUM SENT REQUESTS) ✗ ✓ ✓ ✗ 1
Increase the number of received requests (NUM RECEIVED REQUESTS) ✗ ✓ ✗ ✗ 1
Increase the flow graph’s average node degree (AVG FLOW IN, AVG FLOW OUT) ✗ ✓ ✗ ✗ 1
Increase the number of set cookie (NUM SET COOKIE) ✗ ✓ ✗ ✗ 2
Increase the number of get cookie (NUM GET COOKIE) ✗ ✓ ✓ ✗ 2
Increase the number of accesses to the storage (NUM SET STORAGE, NUM GET STORAGE) ✗ ✓ ✓ ✗ 2

JS Numerical

Increase the frequency of 3-grams (3GRAM FREQUENCY) ✗ ✗ ✓ ✗ 1
Increase / Decrease the ratio of bracket notations to dot notations (RATIO BRACKET DOT) ✗ ✗ ✓ ✗ 1
Increase / Decrease the average identifier length (AVG ID LENGTH) ✗ ✗ ✓ ✗ 2
Increase / Decrease the number of average characters per line (AVG CHARS PER LINE) ✗ ✗ ✓ ✗ 2

original label tad (i.e., ATS) across Dad. That is, this term,
E(x,y)∼Dad

[LCE(· )], computes the average cross-entropy
loss over data points (x, y) in Dad. The second term com-
putes the total injection cost of introducing δ to a webpage.
Each element of our injection cost vector C defines the
cost needed to manipulate each feature. Then, the total
cost needed for injecting δ becomes the dot product of two
vectors: the UAP δ and the cost vector C.

F (δ) = −λ E(x,y)∼Dad
[LCE

(
f ′(θ, x+ δ), tad

)
]+ δ ·C (4)

Table 1 outlines the default injection cost vector used in
our implementation. For each feature, we assign a numeric
cost value that represents a relative risk of manipulating it.
This relative risk reflects the likelihood that perturbing the
corresponding feature could disrupt the webpage’s function-
ality or compromise the stealthiness of the UAP.

The adversary is able to avoid perturbing specific fea-
tures depending on the adversary’s preferences by assigning
higher costs to them. For instance, modifying the parent
node of an ATS request could impact its sibling nodes,

potentially disrupting their functionalities. Therefore, the ad-
versary may want to assign higher costs (e.g., 2 or 3) to the
features involving parent nodes to avoid such disruptions.
The default cost (DC) model in Table 1 is developed from
the adversary’s perspective by two authors, considering the
objectives aforementioned.

By minimizing F (Eq 4), YOPO finds a UAP δ that in-
curs a minimal injection cost while altering the classification
of ATS to non-ATS when added to the original website. Note
that YOPO crafts δ using the dataset sampled from Dad,
but the resulting UAP is effective on other data instances
as well, not just those within Dad. Moreover, YOPO can
generate an effective UAP with only 40 samples, which are
trivial for the adversary to collect (see Appendix C).
PGD-based optimization. YOPO runs the PGD optimiza-
tion on the objective function F as follows:

δt+1 = Π
(
δt − αsign

(
∇δtF

(
δt)

))
(5)

We perform gradient descent on F
(
δt), where δt is a UAP

in the current optimization step t, and α is a step size. It
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then updates the UAP and projects it onto the constrained
space to enforce the feature constraints.

Note that YOPO only computes feature updates on
those that our HTML manipulator addresses (see §4.4). For
features that our HTML manipulator cannot address, YOPO
assigns a fixed value of 0 to the corresponding field in δ and
does not update them in the optimization process. YOPO
perturbs 26, 24, 15, and 11 features out of 65, 75, 27, and 15
when attacking ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, respectively.

The features that YOPO covers in generating a pertur-
bation are categorized into three types: numerical, binary,
and categorical features. We now explain how we enforce
constraints for each type of feature:
• Numerical features. YOPO obtains the minimum and

maximum values from Dad and computes the difference
d for each feature. YOPO then clips the updated per-
turbation value to ensure it falls within [−d, d]. At the
same time, YOPO uses the parameter ϵ as a knob to
control the maximum magnitude of the feature update
in δ, limiting the perturbation value within [−ϵ, ϵ] or
[0, ϵ]. Note that YOPO prioritizes the latter constraint
on features highly likely to disrupt the functionality of a
webpage if the attacker decreases the value. For instance,
when ϵ is 10, YOPO enforces the constraint as follows:
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In this example, the original perturbation computed for
the NUM NODES feature indicates appending 25 nodes to
the graph. However, since the constraint for this numeri-
cal feature is [0, 10], YOPO clips the value, limiting the
perturbation to appending ten nodes.

• Binary features. YOPO employs a one-hot vector rep-
resentation (i.e., a two-dimensional vector) for each bi-
nary feature. Our framework feeds each binary feature
vector into the SoftMax function in the projection step,
transforming it into the probability that a data instance
will belong to each class. When applying the binary
feature to a webpage, our framework selects the class
with a higher probability value.

HTML
body

HTML
script

Scr ipt
node

Network
request

…

# of Nodes # of Edges URL Length Semicolon
FALSE41 40 42

# of Nodes # of Edges URL Length Semicolon Label
ATSFALSE41 40 42

# of Nodes # of Edges URL Length Semicolon_T
041 40 42

Semicolon_F
1

# of Nodes # of Edges URL Length Semicolon_T Label
ATS041 40 42

Semicolon_F
1

# of Nodes # of Edges URL Length Semicolon_T
1+10 +4 +9

Semicolon_F
0

# of Nodes # of Edges URL Length
+25 +4 +9

# of Nodes # of Edges URL Length
+10 +4 +9

Semicolon_T
1

Semicolon_F
0

Semicolon_T
0.856

Semicolon_F
0.144

# of Nodes # of Edges URL Length Semicolon_T
151 44 51

Semicolon_F
0

NUM_EDGES URL_LENGTH SEMICOLON_IN_
URL_TRUE Label

ATS04 3 42

NUM_NODES SEMICOLON_IN_
URL_FALSE

1

SEMICOLON_IN_
URL_TRUE

1

SEMICOLON_IN_
URL_FALSE

0

SEMICOLON_IN_
URL_TRUE
0.9772

SEMICOLON_IN_
URL_FALSE
0.0228

Consider the left-side figure as an example output of
a SoftMax function for the two-dimensional vector of
the SEMICOLON IN URL feature. In this case, YOPO
takes the left-side feature with the higher value, which
indicates adding a semicolon to the URL.

• Categorical features. YOPO takes the same approach
as it does for binary features; the only difference is that
YOPO expands the dimension of categorical features to
the number of their possible categories instead of two.

4.4. HTML/JS Manipulation

In Phase II, YOPO performs adversarial attacks by
mapping each feature update in the computed UAP back
to the adversary’s chosen webpage. We significantly expand

an existing HTML manipulator [65] to include flow and JS
features and to support more structural and content features.
Note that none of the prior studies [43, 56, 65] consider flow
and JS features when conducting adversarial attacks. The
design objective of our HTML/JS manipulator is to correctly
reflect the UAP on a webpage while preserving the original
functionalities and visibility of the webpage. It also aims
to keep the changes introduced to the webpage stealthy at
the HTML level. Note that when applying a single UAP to
each ATS request node, the altered form of the request varies
depending on the surrounding context of the ATS request.
We summarize the features that YOPO perturbs in Table 1.
Applying structural features. Removing HTML elements
can disrupt the webpage layout and functionality. Therefore,
our HTML manipulator only adopts the strategy of adding
new HTML elements rather than removing existing ones
when perturbing structural features. Note that this approach
ensures that the modified webpage remains functional and is
correctly rendered. For example, when the UAP indicates an
increase in the NUM SIBLINGS feature, the HTML manipu-
lator adds sibling nodes using HTML tags with the “hidden”
attribute, effectively introducing new elements without com-
promising the webpage’s visual elements or functionality.

Note that A4 [65] takes a similar approach to increasing
structural feature values. In our experiment, A4 inserted 547
<p> tags with the hidden attribute to increase the number
of nodes (see Appendix A.1). However, repeatedly adding
the same tags can be easily filtered by the defender [53]. To
avoid this, we randomly sample existing HTML elements
from the same webpage and append them as sibling nodes,
thus rendering them indistinguishable from other benign
HTML elements. Specifically, we sample HTML elements
that have <p>, <div>, and <span> tags, as adding these tags
does not incur any side effects (e.g., triggering outgoing
requests or involving JS execution). We assign the hidden
attribute to these tags when injecting them into the webpage
to render them invisible to users.

When the HTML manipulator changes the parent node
to a specific tag to reflect perturbations in the categorical
feature, such as PARENT TAG NAME, YOPO wraps the cur-
rent node with the specified tag. In this way, we maintain
the overall structure and functionality of the webpage while
reflecting the changes that the UAP requires.
Applying content features. Note that all perturbable con-
tent features are associated with modifying the target URL
of a given ATS request node. The HTML manipulator
reflects these changes by modifying the URL.

When the UAP increases the URL length, the HTML
manipulator randomly extracts query strings from the URLs
of other network request nodes on the same webpage and
then appends them to the target URL. This increases the
stealthiness of the manipulated URL. For example, to ap-
ply the UAP to the URL LENGTH and SEMICOLON IN URL
features, YOPO modifies the URL as follows:

1 <body>
2 <script src="http://assets.adnetwork.com/js/ad_30x25.js

↪→ #ver3.15;">
3 </body>
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YOPO appended nine characters to the URL. These char-
acters include (1) a # symbol, which makes the appended
characters a URI fragment, (2) ver3.15, extracted from a
query string randomly sampled from URLs on the same
page, and (3) a semicolon. On the other hand, when the
UAP requires a decrease in the URL length, the HTML ma-
nipulator selectively deletes URL elements while ensuring
that the domain name remains unchanged.
Applying flow features. Flow features describe the infor-
mation flow in a webpage, such as the number of read-
/write accesses to cookies. Since these flow features capture
the dynamic behavior of a webpage, static manipulation
of the HTML elements cannot alter the information flow
features of a target network request node. To manipulate
flow features, we assume that an abusive ATS provider
can alter ATS-related JS files, thereby introducing arbitrary
information flows (e.g., reading/writing cookies).

Specifically, to perturb the flow feature of an ATS re-
quest fetching a JS file, YOPO appends a JS snippet that
introduces additional information flows. For example, when
the UAP requires an increase in the number of cookie access,
it appends a JS code snippet, such as document.cookie.
Applying JS features. YOPO supports perturbing nine
features extracted from JS code, such as AVG ID LENGTH or
AVG CHARS PER LINE. YOPO manipulates these features
by adding JS snippets. For example, when a UAP demands
a decrease in the feature values of AVG ID LENGTH and
AVG CHARS PER LINE, YOPO appends JS statements that
declare short variables and empty lines, respectively.

YOPO also supports manipulating the 3-gram frequen-
cies extracted from JS abstract syntax trees, which AD-
FLUSH leverages for ATS classification. Note that when
ADFLUSH classifies a request fetching a JS file, it fetches
this JS file, parses it into an abstract syntax tree, and then
extracts 3-grams of node types by traversing the tree in a
depth-first order. ADFLUSH then extracts the frequencies
of the extracted 3-grams for an input feature. In YOPO,
to increase the frequency of the 3-grams (e.g., Statement,
CatchClause, and Statement) that the computed UAP indi-
cates to manipulate, YOPO appends JS snippets that match
the 3-grams that the UAP demands to change. For this, we
prepare six JS snippets, each of which corresponds to a
3-gram that ADFLUSH leverages for its classification (see
Appendix G).

YOPO has significantly expanded its feature support
compared to that of A4. While A4 was designed to sup-
port only 19 features from ADGRAPH, YOPO supports
46 features from ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, covering information flow and JS code features.
We also note that YOPO supports injecting HTML/JS code
in a stealthy manner, seamlessly blending the injected code
into the target webpage, which A4 has not considered.

5. Evaluation

We audit the robustness of existing ATS blockers to
our universal adversarial attacks. We implement YOPO in
10K+ LoC using Python 3.8 and PyTorch 1.13.0. We also

employ a man-in-the-middle proxy to monitor requests to
target websites and redirect the responses to our local server
to test the efficacy of the UAPs that YOPO generates. We
release our code at https://github.com/WSP-LAB/YOPO.

5.1. Experimental Setup

All our experiments are conducted on a machine
equipped with two Intel Xeon Gold 6348 (2.7 GHz) CPUs,
four NVIDIA RTX 3090 GPUs, and 768 GB of DRAM.
The machine runs Ubuntu 22.04 (64-bit).
Datasets. To construct our datasets, we crawl 7,907 web-
pages from Tranco’s Top-10K websites as of December
2023. We transform each webpage into the graph repre-
sentations used by our target ATS blockers. We extract the
features for each network request node. We then label each
data instance as ATS or non-ATS based on the recipient
domain of the corresponding network request. When the
domain matches any of the eight ad blocklists [1, 4, 5, 7]–
[10, 12], its data instance is labeled as ATS; otherwise, it
is labeled as non-ATS. We compile 477,559 data instances
for ADGRAPH, 459,995 data instances for WEBGRAPH and
ADFLUSH, and 405,270 data instances for PageGraph.

For each target ATS blocker, we randomly sample 100K
data instances to train its surrogate model. We assign hard
labels to those instances based on their classification results
from the target ATS blocker. We then randomly select 40K
instances, which are labeled as ATS and not used for training
the surrogate model. We then use these 40K samples for
Dad to generate a UAP. To test the efficacy of YOPO, we
choose 2K target requests randomly. Note that these are all
ATS requests and are not used for training the surrogate
or generating a UAP. We do not include any ATS requests
made after dynamic JS execution as target nodes because our
HTML manipulator perturbs ATS requests before rendering
occurs. In Appendix C, we also consider an adversary using
a different number of samples for training a surrogate model
and UAP generation.
Target ATS blockers. We select ADGRAPH [37], WEB-
GRAPH [56], ADFLUSH [43], and PageGraph [58] as our
target ATS blockers. Note that ADFLUSH offers a Chrome
extension [42] to facilitate its wide deployment. Since Page-
Graph [58] only blocks ATS images, we re-implemented its
classifier to support the classification of other types of ATS
resources beyond images, such as iframes, styles, and JS
code. To train this classifier, we excluded perceptual features
obtained from image resources and retained the remaining
features extracted from the PageGraph representation pro-
vided by the native Brave browser [6].

These ATS classifiers leverage a wide range of HTML
and JS features from webpages, ranging from primitive to
sophisticated features, including information flow features.
These features serve as well-received raw input that follow-
up ATS classification studies will first consider.

Note that the target ATS blockers (ADGRAPH, WE-
BGRAPH, ADFLUSH, and PageGraph) use random forest
classifiers, which we implemented using the scikit-learn
library. To evaluate the performance of each classifier, we
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TABLE 2: Reproduced (Ours) and reported performance of
the four target ATS blockers: ADGRAPH (AG), WEBGRAPH
(WG), ADFLUSH (AF), and PageGraph (PG).

Target Accuracy (%) Precision (%) Recall (%)

Model Ours Reported Ours Reported Ours Reported

AG 92.64 95.33 89.90 89.10 85.30 86.60
WG 95.68 94.32 93.26 92.24 92.27 94.14
AF 95.93 98.00 95.34 98.00 90.87 96.00
PG 95.89 97.60 92.90 92.00 93.45 75.00

conducted stratified 10-fold cross-validation on the data
instances aforementioned and reported the average perfor-
mance metrics across the ten test folds. To determine the
best spatial ratio for each data folder, we varied the ratio
and selected the best-performing spatial ratio of ATS data
instances, which was an ATS ratio of 30%. When training
each model, we used all the features supported by the
model to maximize its performance. Table 2 summarizes
the performance of these target ATS blockers trained on
our dataset, along with their reported performances from
the respective papers [37, 43, 56, 58].
Surrogate models. Our architectural choice of the surrogate
model for each ATS blocker is a four-layer feed-forward
neural network. We train each surrogate model for 30 epochs
using 100K randomly sampled data instances, without con-
sidering the spatial ratio when compiling these training
instances. We assume that our black-box adversary trains
the surrogate model with a different network architecture
and different data instances labeled by the target model,
resulting in performance differences compared to its original
model. The accuracy of the surrogate model serves as a
proxy for how closely it resembles the decision boundary
of the target model; a higher accuracy indicates that a
surrogate model is better for attacking. The surrogate model
for ADGRAPH has an accuracy of 95.49%, and those for
WEBGRAPH, ADFLUSH, and PageGraph show accuracies
of 85.36%, 87.38%, and 83.45%, respectively.
Metrics. We employ two metrics for evaluating our attacks:
the attack success rate (ASR) and the total cost (TC) of UAP
injection. To compute ASR, among the 2,000 target requests,
we only perturbed ATS requests that the target classifier
correctly identified as ATS. The ASR is the ratio of the
perturbed ATS requests that the target classifier misclassifies
as non-ATS to the total number of perturbed ATS requests.
TC represents the average cost of reflecting a UAP across
the 2K webpages that initiate the target requests. A higher
ASR and a lower TC indicate better efficacy in generating
effective UAPs.
Injection costs. YOPO requires a cost model (i.e., cost
vector C) for each feature set, where we assign an abstract
cost to each feature that represents the relative risk of
manipulating it. To demonstrate the flexibility of YOPO in
generating UAPs with different cost models, we define four
cost models: default cost (DC), high manipulation costs for
HTML structural features (HSC), high manipulation costs
for content features (HCC), and high manipulation costs for

TABLE 3: Attack success rates (ASRs) and total costs (TC)
of YOPO against ADGRAPH (AG), WEBGRAPH (WG),
ADFLUSH (AF), and PageGraph (PG).

Target Cost ϵ = 5 ϵ = 10 ϵ = 20 ϵ = 40 1

Model Type ASR
(%) TC ASR

(%) TC ASR
(%) TC ASR

(%) TC 2

AG
DC 87.70 32 89.27 43 90.38 65 92.27 89 3

HSC 87.93 67 89.59 68 89.91 70 92.19 75 4

HCC 77.68 73 80.44 92 80.20 124 82.26 165 5

WG
DC 67.03 36 71.21 57 71.50 89 71.48 150 6

HSC 66.74 33 69.38 50 69.23 83 69.60 170 7

HCC 67.11 89 67.91 105 67.77 128 68.35 186 8

AF
DC 59.71 11 61.91 19 61.69 34 60.73 65 9

HJC 59.85 51 61.25 62 61.62 72 60.37 108 10

HCC 57.06 21 58.24 27 58.46 41 58.38 72 11

PG†
DC 82.42 5 84.16 8 85.35 13 85.53 22 12

HSC 71.43 10 76.10 11 81.50 13 82.51 17 13

HCC 80.31 18 84.98 20 85.81 22 85.47 28 14

WG‡ DC 22.47 17 27.64 32 28.06 63 27.99 125 15

† PageGraph without perceptual features.
‡ WEBGRAPH without content features.

JS features (HJC). DC maintains a balanced cost setting,
while HSC assigns 10 times higher costs to changing struc-
tural features, directing YOPO to avoid perturbing HTML
structural features. Similarly, HCC guides YOPO to avoid
perturbing content features. When attacking ADFLUSH, we
adopt the HJC cost model instead of HSC since ADFLUSH
does not use structural features; HJC guides YOPO to avoid
perturbing JS features. ϵ denotes the maximum perturbation
value that YOPO applies to numerical features and does
not affect the binary or categorical features, which only take
values of 0 or 1.

5.2. Effectiveness of Our UAPs

Table 3 summarizes the effectiveness of our UAP against
the target ATS blockers. Rows 3–5 show our attacks against
ADGRAPH. We achieve high ASRs, ranging from 77.68%
to 92.27% across the different ϵ values and the three cost
models. Notably, YOPO achieved a 92.27% ASR against
ADGRAPH when ϵ was set to 40 in the DC model. When
applying the HCC and HSC models, the overall ASRs
slightly decreased, as these cost models restrict the feature
search space for finding UAPs. Despite these decreases in
ASR, YOPO still generates effective UAPs, maintaining
ASRs above 77.68%.

Rows 6–8 show that WEBGRAPH is more robust than
ADGRAPH. The ASRs vary between 66.74% and 71.50%.
We attribute the reduction in ASR for WEBGRAPH to its
use of information flow features. Manipulating flow features
requires additional effort than modifying HTML elements,
such as redirecting the received request to other servers.
Currently, YOPO only supports manipulating flow features

198



AᴅGʀᴀᴘʜ WᴇʙGʀᴀᴘʜ AᴅFʟᴜsʜ PageGraph

DC HSC HCC DC HSC HCC DC HSC HCC DC HSC HCC
0

50

100

150 Structural
Content
JavaScript

AᴅGʀᴀᴘʜ WᴇʙGʀᴀᴘʜ

AᴅFʟᴜsʜ

PageGraph

DC HJC HCC DC HJC HCC

DC HJC HCC

DC HJC HCC
0

50

100

150 Structural
Content
JavaScript

Figure 2: Comparison of perturbation magnitudes in UAPs’
numerical features. UAPs are generated with ϵ of 40 using
four injection cost models: DC, HSC, HCC, and HJC.

for network request nodes that fetch JS snippets. While
YOPO only allows perturbing a subset of flow features,
it attains a high ASR of up to 71.50% against WEBGRAPH.

Rows 9–11 show our attack results against ADFLUSH.
YOPO achieves ASRs of up to 61.91%, exhibiting the
lowest ASR among the four ATS blockers. Note that AD-
FLUSH leverages character embedding features extracted
from webpages (e.g., URLs and domain names). Perturbing
these embedding features is technically challenging since
directly perturbing embedding vectors and finding characters
of which embeddings are similar to these updated em-
beddings often results in ineffective adversarial characters.
However, YOPO still exhibits ASRs above 57%.

Rows 12–14 present the attack results against Page-
Graph. YOPO bypassed PageGraph with ASRs ranging
from 71.43% to 85.53%, demonstrating its effectiveness.
In Row 15, we also report YOPO’s efficacy against WE-
BGRAPH without content features. Although this version
of WEBGRAPH becomes more resistant to attacks, with a
maximum ASR of 28.06%, it suffers from a 7.39% drop
in classification accuracy [56], making it less practical for
real-world deployments.

When comparing cost models, YOPO exhibits relatively
higher ASRs with HSC (HJC for ADFLUSH) than HCC.
This result provides an insight into the features that our
target ATS blockers rely on: they depend more on the con-
tent features than on structural and JS features when making
decisions. This finding highlights the importance of content-
related features in ATS classification, which exacerbates the
adversary’s threat since URL-related content features are
trivial to manipulate.
Per-sample adversarial attacks. In our experiment in §3,
A4 [65] achieved an ASR of 80.83% against ADGRAPH
by conducting per-sample evasion attacks. We note that
YOPO shows a higher ASR of 92.27% with only a single
perturbation. We attribute this result to the fact that A4

perturbs only 19 features, while YOPO exploits 26 features.
We also emphasize that YOPO generates a UAP that can
be applied to multiple ATS requests (refer to Appendix E).
Moreover, YOPO takes 32.42 seconds for UAP generation,
which is a one-time cost. Such small computational demands
significantly reduce the resources attackers need, enabling
them to conduct the attack at scale.
Injection cost comparison. Figure 2 shows the sum of
numerical feature values in the generated UAP for three
target ATS blockers under different injection cost models.

For ADGRAPH, WEBGRAPH, ADFLUSH, and PageGraph,
we examine 11, 15, 10, and 8 numerical features in the UAP,
respectively, and separate them into the content, structural,
and JS feature groups. In HSC, YOPO introduces smaller
changes in the numerical features associated with the HTML
structures. This indicates that when manipulating structural
features, YOPO is more conservative due to the higher cost
associated with changing the underlying HTML structure.
Similarly, in HJC, YOPO tries to generate smaller changes
in the numerical features within the JS features. In contrast,
in HCC, YOPO exhibits a tendency to introduce small
changes in the numerical features within the content feature
group. Overall, these results demonstrate the flexibility of
YOPO in generating UAPs across different cost models
and its ability to adapt a UAP based on the target features
and their associated manipulation costs. In Appendix D, we
further evaluate the impact of attacking ML models other
than a random forest classifier.

5.3. Characterization of Vulnerability

We conduct an ablation study to investigate the impact
of each perturbed feature on the ASRs against ADGRAPH,
WEBGRAPH, ADFLUSH, and PageGraph. For this, we
choose a feature to nullify and compute the ASR difference
between the original UAP and the UAP without that feature.
We set ϵ to 10 for this experiment.
Results. Table 4 shows the top five most important features
for a successful universal attack. We find that binary features
play a crucial role in generating effective UAPs against all
classifiers. For example, in ADGRAPH, binary features, such
as removing/adding an async/defer attribute from the parent
node, contribute the most to changing classification results.
If the attacker cannot control one of the binary features,
the ASR decreases by at most 23.44%. Perturbations to
numerical features (e.g., increasing the URL length or in-
creasing the 3-gram frequency in an AST) are also effective
in successful attacks. Especially, in ADFLUSH, features re-
garding the frequencies of 3-grams in an AST play a crucial
role. Three out of the top five most influential features
are attributed to the frequencies of 3-gram sequences. In
WEBGRAPH, the top three most crucial features are all the
content features. This result highlights that the vulnerability
of WEBGRAPH to our attacks stems from its dependence
on content features in classification.

Recall that YOPO overwrites binary features when in-
jecting the UAP into a target ATS instance (§4.3) and that
the most influential features for attack success are mostly
binary features (Table 4). Hence, we further investigate
whether high ASRs (the target ad-blocker misclassifies the
majority of ATS instances as non-ATS) occur when we
overwrite these binary features. To validate our hypothe-
sis, we analyze the distribution of these binary features
in our dataset. We first select the top five most influential
binary features contributing to the attack. For ADFLUSH and
PageGraph, as YOPO only perturbs one and three binary
features, respectively, we select those binary features. Then,
for the selected binary features, we analyze network requests
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TABLE 4: Top five most influential features in UAPs against
ADGRAPH, WEBGRAPH, ADFLUSH, and PageGraph.

Target Description of Perturbation Category Feature
type

ASR
(↓)

A
D

G
R

A
P

H

Set PARENT ASYNC to TRUE Structural Binary -19.87%
Set SEMICOLON IN URL to TRUE Content Binary -8.28%
Set PARENT DEFER to FALSE Structural Binary -5.83%
Set DOMAIN IN QS to FALSE Content Binary -5.52%
Increase URL LENGTH Content Numerical -1.89%

W
E

B
G

R
A

P
H

Set AD KEYWORD IN URL to FALSE Content Binary -23.44%
Set SIZE KEYWORD IN URL to TRUE Content Binary -10.48%
Set SPECIAL CHAR IN URL to
FALSE Content Binary -4.32%

Increase NUM SET STORAGE Flow Numerical -3.64%
Increase NUM RECEIVED REQUESTS Flow Numerical -3.08%

A
D

F
L

U
S

H

Increase 3GRAM FREQUENCY
(Identifier, Expression, Identifier) JS Numerical -9.41%

Increase 3GRAM FREQUENCY
(Identifier, Expression, Literal) JS Numerical -8.53%

Increase URL LENGTH Content Numerical -3.38%
Set SPECIAL CHAR IN URL to
FALSE Content Binary -3.16%

Increase 3GRAM FREQUENCY
(Expression, Identifier, Identifier) JS Numerical -1.4%

Pa
ge

G
ra

ph

Set SEMICOLON IN URL to TRUE Content Binary -12.64%
Increase NUM IN OUT Structural Numerical -9.89%
Increase AVG DEGREE Structural Numerical -7.24%
Set MOD BY SCRIPT to FALSE Content Binary -5.13%
Set PARENT MOD BY SCRIPT to
FALSE Structural Binary -4.86%

that have a specific combination of values that the UAP
overwrites with. 98.48%, 97.55%, 81.67%, and 75.71%
of such network request nodes in our dataset are non-
ATS nodes in ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, respectively. We believe that this imbalanced
distribution causes the model to regard specific combinations
of binary features as a strong sign of non-ATS instances.
Consequently, the adversary is able to alter the classification
of ATS instances from ATS to non-ATS by overwriting
these binary features. We leverage this intuition to present
potential countermeasures in §6.

5.4. Preserving Website Functionalities

YOPO manipulates HTML files when injecting the gen-
erated UAP into webpages. However, this HTML manipu-
lation may affect the classification results of other non-ATS
resources or break the original webpage functionality.

We analyze the unintended side effects caused by HTML
manipulation. To this end, for each target ATS blocker, we
measure the collateral damage [56] in 100 webpages filtered
by that blocker. Collateral damage is the ratio of non-ATS
nodes classified as ATS after the attack, quantifying the
extent to which the ATS blockers block non-ATS resources
after the attack. Greater collateral damage can negatively
impact the victim’s browsing experience.
Results. We observe the collateral damage of 2.97% ±
5.20% (median: 0.00), 1.51% ± 3.76% (median: 0.00),

2.97% ± 5.45% (median: 0.00), and 2.45% ± 4.41% (me-
dian: 0.00) in ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, respectively. In numbers, our attacks cause
collateral damage in only 39, 26, 44, and 47 webpages
in ADGRAPH, WEBGRAPH, ADFLUSH, and PageGraph,
respectively.

We further analyze whether collateral damage changes
the original functionality of a webpage. Following prior
work [56], we manually inspect the functionality of the
156 webpages with non-zero collateral damage. To conduct
this analysis, we install an extension that blocks the URLs
classified as ATS on the vanilla Firefox browser. We then
load the original and manipulated versions of the webpage
and compare whether YOPO introduces any functionality
breakage. We find that only 14 webpages out of the 400
instances exhibit functionality disruption (e.g., sign-in func-
tionality or apparent visual breakages). We further elaborate
on the impact of applying the UAP generated by YOPO
with a concrete example in §A.2.

6. Countermeasures

We now discuss potential countermeasures against our
adversarial attacks. We initially evaluated the effectiveness
of a standard countermeasure against adversarial input per-
turbations, adversarial training [45], which involves train-
ing ATS blockers with perturbed samples. However, we
observed that this method is ineffective in reducing the
attacker’s success rate (see Appendix B). We thus introduce
two alternative mitigation strategies to enhance the ATS
blocker’s robustness against our attacks.

We first examine whether making the ATS classifiers
less sensitive to binary features is effective in decreasing
the attacker’s chance of performing successful attacks. We
additionally present a strategy designed to mislead YOPO
into computing perturbations that are difficult to implement
in HTML. By combining these countermeasures, we propose
a way of preprocessing input features that restricts the
adversary’s options on perturbable input features, thereby
decreasing the likelihood of successful evasion attacks.

6.1. Nullifying Binary Features

Recall from §5.3 that the existing ATS blockers heavily
rely on binary features due to their imbalanced distribution
in the training set crawled from the Internet. YOPO exploits
this imbalanced distribution to generate a UAP. Hence, we
hypothesize that addressing this natural distribution imbal-
ance will make the ATS blockers less dependent on these
binary features, thereby enhancing the classifier’s robust-
ness.
Methodology. To this end, we manipulate the values of the
top five most important binary features used by our target
ATS blockers (recall §5.3). Specifically, we set these feature
values to zero for all our training samples and train the
ADGRAPH, WEBGRAPH, ADFLUSH, and PageGraph mod-
els on this revised training set, ensuring that the resulting
models do not use these feature values for classification. For
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TABLE 5: Comparison of ASRs and performance of ATS
blockers when applying our mitigation strategies.

Target Model Mitigation ASR Accuracy Precision Recall

ADGRAPH

- 89.27 92.64 89.90 85.30
#1 61.75 92.15 89.11 84.43

#1 + #2 40.41 91.59 85.49 87.05

WEBGRAPH

- 71.21 95.68 93.26 92.27
#1 63.90 95.39 92.52 92.08

#1 + #2 48.55 95.19 91.64 92.38

ADFLUSH

- 61.91 95.93 95.34 90.87
#1 49.82 95.79 94.99 90.77

#1 + #2 42.74 95.68 95.00 90.34

PageGraph
- 84.16 95.89 92.90 93.45

#1 70.28 95.78 92.66 93.06
#1 + #2 64.51 95.74 92.59 93.26

example, we set the value of the PARENT ASYNC feature,
which examines if the parent node has an async attribute,
to zero.
Results. Table 5 summarizes the results of applying our
mitigation strategy. The last three columns represent the ATS
blocker’s performance when applying the mitigation in the
second column. The third column represents the ASR when
conducting YOPO attacks against the corresponding model.

As the table shows, after applying the mitigation, all
three classifiers achieve improved robustness against our
UAP attacks. We successfully reduce the ASR of AD-
GRAPH, WEBGRAPH, ADFLUSH, and PageGraph from
89.27%, 71.21%, 61.91%, and 84.16% to 61.75%, 63.90%,
49.82%, and 70.28%, respectively. Moreover, even if we
remove the models’ reliance on the top five binary features,
we still preserve the performance of the ATS classifiers.

6.2. Misleading Perturbation Directions

Our second strategy involves misleading the optimiza-
tion procedure of YOPO to generate UAPs that are difficult
to implement in HTML. For this, we preprocess numerical
input features and train an ATS blocker using these features.
This preprocessing step induces our attack against the new
ATS blocker to reflect decreases in numerical features within
webpages. These perturbations entail removing HTML ele-
ments, which often results in functionality breakage or lay-
out disruption. Consequently, this countermeasure restricts
the adversary to perturbing only a limited set of features.
Methodology. For a set of numerical features, we manipu-
late the vast majority of feature values of which non-ATS
samples have small values, thus intentionally introducing
an imbalanced distribution into those features. Such feature
engineering provides a strong signal to the target classifier
that most non-ATS samples have small values for the se-
lected features, while most ATS samples have large values.
Consequently, this approach guides the UAP optimization
process toward decreasing the selected features because the
adversary seeks to alter the model’s prediction for them to
the non-ATS class.

However, preprocessing all numerical features for non-
ATS instances to have small values certainly leads to a
notable performance drop in ATS classification. Therefore,
we select a subset of features among the numerical features
that YOPO perturbs. Each feature in this subset meets the
criterion where the proportion of non-ATS samples falling
below a specific threshold exceeds that of ATS samples
below the same threshold by at least 20%. Given that
these features already have imbalanced distributions, with
a significant portion of non-ATS samples having smaller
feature values compared to those of ATS samples, there is
room for preprocessing input features.

For instance, 54.56% (33.90%) of non-ATS (ATS) re-
quest nodes in our dataset have no siblings. We thus include
the NUM SIBLINGS feature in our feature set to preprocess.
As a result, we choose five, eight, one, and two numeri-
cal features for ADGRAPH, WEBGRAPH, ADFLUSH, and
PageGraph, respectively. We then add an additional 10%
of non-ATS samples that initially had values greater than
the aforementioned threshold for these features to have
random values ranging from zero to the threshold. After
this preprocessing, the proportion of non-ATS samples falls
below that of ATS samples by at least 30%. Finally, we train
the ATS classifiers using these adjusted data instances.
Results. Table 5 shows the effectiveness of our mitigation.
We consider a scenario where a defender applies both
mitigation methods at the same time, expecting a further
increase in the model’s robustness against our attacks. Our
approach results in an additional ASR drop of 21.34%,
15.35%, 7.08%, and 5.77% for ADGRAPH, WEBGRAPH,
ADFLUSH, and PageGraph, respectively, without notable
performance decreases.

7. Conclusion

We present a novel auditing framework (YOPO) de-
signed to generate a single adversarial perturbation cost-
effectively. YOPO formulates UAP generation as an op-
timization problem, incorporates the cost of manipulating
various features into the objective function, and optimizes a
UAP on this objective function. We show that our attack
bypasses the ATS blockers with a success rate of up to
92.27% without compromising the website’s functionality
or visual elements, demonstrating its critical threat. We also
observe that imbalanced feature distribution leads to the
common vulnerability of the ATS classifiers and discuss two
feature engineering-based mitigation strategies.
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A. Case Study

A.1. Per-sample adversarial attacks (A4)

1 <span>
2 <span>
3 <span>
4 <link href="//securepubads.g.doubleclick.net?918019=

↪→ people.com#?track##...#\&amp;screenwidth=q"/>
5 </span>
6 <p hidden=""></p><p hidden=""></p>...<p hidden=""></p>
7 </span>
8 </span>

Figure 3: A website (people.com) manipulated by A4.

Figure 3 illustrates an HTML snippet of people.com af-
ter performing a per-sample adversarial attack with A4 [65].
A4 attempted to bypass the detection of a network request
that fetches an ATS-related JS snippet initiated by Line 4.
As highlighted, A4 placed aggressive modifications on the
target HTML document; A4 added 128,849 fragment iden-
tifiers (#) to the URL and 547 paragraph tags (<p>) with a
hidden attribute.

A.2. Universal adversarial attacks (YOPO)

Figure 4 shows the impact of our attacks on a website
in a real-world hosting scenario. In the original webpage
shown in Figure 4a, ADGRAPH blocks a network request
that fetches a JS code snippet responsible for placing an ad
at the top of this webpage. When we apply our UAP to the
website, the ad bypasses ADGRAPH and is rendered without
any side effects. Figure 5 shows all HTML manipulations
made by YOPO on a network request node initiated by
Line 8. Here, YOPO wrapped the <script> tag with <div>
tags to remove ad-related keywords in the ascendant nodes’
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(a) Original webpage (b) Perturbed webpage

Figure 4: Visual comparison of the original and perturbed webpages of dezeen.com. The figure on the right shows that our
attack bypasses ADGRAPH with human-imperceptible perturbations.

1 <div>
2 <div>
3 <div class="carousel-true-title" hidden=""></div>
4 <picture hidden="1">
5 ...
6 <span hidden=""></span>
7 <div class="category-type-background" hidden=""></div>
8 <script defer src="https://securepubads.g.doubleclick

↪→ .net/tag/js/gpt.js#ver3.15.#;#3617x4553">
9 </script>

10 ...
11 </picture>
12 </div>
13 </div>

Figure 5: HTML manipulations that YOPO applies to the
dezeen.com webpage (shown in Figure 4b).

attributes (in Lines 1 and 2). To alter the parent tag name,
YOPO wrapped the <script> tag with a <picture> tag (in
Line 4). YOPO also added a semicolon and a size-related
expression to the request URL (in Line 8). We highlight
all tags and strings that YOPO extracted from the same
webpage and reused to reflect the UAP, showing that they
are visually indistinguishable from other benign nodes.

B. Efficacy of Adversarial Training

Adversarial training [45] (AT) is a seminal approach
to improve the robustness of a DNN model to human-
imperceptible adversarial perturbations.
Methodology. To evaluate the effectiveness of AT against
YOPO, we adversarially trained target ATS blockers. Since
ATS classifiers typically employ ML models such as ran-
dom forests, implementing adversarial training with these
models is less straightforward. To address this challenge,
we augmented the training data with a UAP generated by
YOPO and then retrained the models on the augmented
training set. Specifically, we randomly selected 20K, 40K,
and 60K samples from the training set, applied the UAP to
these samples, and added them back into the training data.
We assess performance using two metrics: the classification
accuracy of the defended model and the ASR. Note that we

TABLE 6: Comparison of attack success rates and perfor-
mance of ATS blockers when applying adversarial training.

Target Model # of adv.
examples ASR Accuracy Precision Recall

ADGRAPH

20K 88.59
(0.68↓)

90.93
(1.71↓)

88.53
(1.37↓)

73.45
(11.85↓)

40K 83.75
(5.52↓)

91.88
(0.76↓)

88.34
(1.56↓)

71.71
(13.59↓)

60K 81.07
(8.20↓)

92.61
(0.03↓)

87.89
(2.01↓)

70.33
(14.97↓)

WEBGRAPH

20K 70.79
(0.42↓)

95.87
(0.19↑)

92.78
(0.48↓)

91.67
(0.60↓)

40K 67.18
(4.03↓)

96.07
(0.39↑)

92.59
(0.67↓)

90.14
(2.13↓)

60K 63.59
(7.62↓)

96.31
(0.63↑)

92.56
(0.70↓)

87.61
(4.66↓)

ADFLUSH

20K 60.73
(1.18↓)

96.09
(0.16↑)

94.96
(0.38↓)

90.08
(0.79↓)

40K 56.25
(5.66↓)

96.24
(0.31↑)

94.59
(0.75↓)

88.56
(2.31↓)

60K 54.05
(7.86↓)

96.23
(0.30↑)

93.74
(1.60↓)

85.41
(5.46↓)

PageGraph

20K 83.74
(0.42↓)

95.65
(0.24↓)

93.43
(0.53↑)

91.64
(1.81↓)

40K 76.81
(7.35↓)

96.06
(0.17↑)

92.61
(0.29↓)

90.24
(3.21↓)

60K 75.06
(9.10↓)

96.31
(0.42↑)

91.56
(1.34↓)

86.26
(7.19↓)

generated a new UAP while setting the perturbation bound
ϵ to 10 and used it to attack the defended model.
Results. We find that AT is ineffective as a countermeasure
against our attacks. Table 6 presents the performance of
the defended models and their corresponding ASRs. As
shown in the third column, the ASR decreased by less than
10% across all ATS blockers, indicating that this approach
provides no significant defense. Moreover, this retraining led
to a critical performance drop, with ADGRAPH experiencing
a recall decrease of up to 14.97%.
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Figure 6: Impact of the attack hyperparameter λ on ASR.
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Figure 7: Impact of sample sizes in crafting a UAP on ASR.

We attribute the ineffectiveness of AT against YOPO to
the way it perturbs binary and categorical features. YOPO
flips the values of these features (i.e., 0→1 or 1→0), which
significantly alters the input. While AT is effective in making
models robust to small numerical perturbations, it becomes
ineffective when feature values are drastically changed.
This observation aligns with recent findings [57], which
also showed that AT struggles to defend against adversarial
attacks that generate discrete-valued perturbations.

C. Impact of Attack Configurations

Impact of attack hyperparameters. YOPO uses our opti-
mization function to generate a UAP; the function employs
an attack hyperparameter λ. A larger λ indicates a stronger
focus on changing the ATS label to the non-ATS label, while
a lower value of λ places emphasis on minimizing the total
cost of injecting a UAP.

Figure 6 illustrates the variation in ASRs for ADGRAPH,
WEBGRAPH, and ADFLUSH when we vary λ. We ob-
serve that the ASR increases as λ increases. The attack
success saturates when λ is 400 in ADGRAPH and 40 in
WEBGRAPH. The results show that it is crucial for our
evasion attack to emphasize misclassification (i.e., a higher
λ). However, after a certain point, attack success begins
to saturate. We note that the adversary can perform this
profiling offline on their surrogate models to find an optimal
value of λ.
Impact of sample sizes. We now measure the ASRs while
varying the size of the samples the adversary is able to use
in crafting a UAP. Figure 7 illustrates the impact of sample
sizes used for crafting a UAP on ASR. We also set ϵ to 10.
We hypothesize that the ASR will decrease as the attacker
uses a smaller dataset to generate UAPs. However, even
when the attacker uses only four instances for computing a
UAP, the ASR remains at 50–70%. This result demonstrates
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Figure 8: Impact of the training set sizes for the surrogate
model on ASR.

that the adversary can still generate an effective UAP even
with a small number of samples. This finding is consistent
with previous studies in the image domain, where even a
small number of sampling instances can lead to high ASRs
in adversarial attacks. Khrulkov et al. showed that using only
16 sampled images can enable the generation of per-sample
adversarial perturbations with a 56% ASR [39].
Impact of dataset sizes in training surrogate models.
We hypothesize that if the number of queries an adversary
sends to the target ATS classifier reduces, our attack success
can decrease as the surrogate models may have degraded
performance. Figure 8 shows our results against ADGRAPH,
WEBGRAPH, and ADFLUSH. The bar graphs represent the
test accuracy of different surrogate models, each of which
is trained on a corresponding number of queries to the
target ATS classifier. The line plots show the ASR when
the attacker uses each surrogate model.

As shown in Figure 8, YOPO can yield accurate sur-
rogate models when the number of queries to the target
ATS classifiers increases. The improved accuracy results in
increased ASRs. We also observe that a number of queries
lower than 5K leads to an ASR of less than 50%. However,
increasing the number to 5K or more can improve the ASR
by up to 90%. In WEBGRAPH, we observe that the ASR
increases. However, compared to our results in ADGRAPH,
the ASR is relatively stable. Since ASR is highly dependent
on how well the surrogate model mimics the target classifier,
we attribute the stability of the ASRs against WEBGRAPH
to marginal improvement in surrogate model performance
while using more queries.

D. Attacking Different ML Algorithms

We extended the evaluation of YOPO to consider two
additional tree-based classifiers, XGBoost and LightGBM,
as potential alternatives to the random forest classifiers that
our target ATS blockers use. Table 7 presents a summary of
the performance of YOPO against these new target models.
The first column indicates the ML training algorithms of the
target models, and the second column shows the feature sets
that the corresponding algorithms leverage.

The third to fifth columns display the overall perfor-
mance metrics of the corresponding target models. Notably,
the performance of the ML models using XGBoost and
LightGBM was slightly better than that of the original
models.
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TABLE 7: ASRs and the performance of three target
ML classifiers, using the XGBoost and LightGBM algo-
rithms, are measured using three evaluation metrics: accu-
racy (Acc.), precision (Prec.), and recall (Rec.).

Target Feature Performance (%) ASR (%)

Model Type Acc. Prec. Rec. ϵ = 5 ϵ = 10 ϵ = 20 ϵ = 40

XGBoost

ADGRAPH 92.55 89.10 85.94 87.22 88.41 89.83 91.01

WEBGRAPH 96.33 94.66 93.02 70.70 70.62 71.14 71.79

ADFLUSH 96.77 95.62 93.50 58.90 60.96 61.04 60.57

LGBM

ADGRAPH 92.82 89.53 86.41 86.91 88.27 88.49 89.75

WEBGRAPH 95.75 93.61 92.15 66.23 65.71 67.47 66.89

ADFLUSH 96.89 95.82 93.74 60.37 61.18 62.87 62.21

TABLE 8: Average ASRs when attacking multiple ATS
requests on a single webpage. For target webpages, we
randomly selected 100 webpages, each of which initiated
at least five ATS requests.

Target # of avg. ASR (%)
Model ATS requests

ϵ = 5 ϵ = 10 ϵ = 20 ϵ = 40

ADGRAPH 17.36 82.53 83.68 85.44 85.21
WEBGRAPH 15.36 68.28 68.01 71.58 70.53
ADFLUSH 15.48 56.12 57.14 68.37 70.41

The sixth to ninth columns show the ASRs with different
ϵ values. The experimental results show that regardless of
the target ATS classifiers and the ML training algorithm,
YOPO consistently achieved high ASRs that were compa-
rable to those observed against ADGRAPH, WEBGRAPH,
and ADFLUSH using the original random forest algorithm.
These results demonstrate the robustness and effectiveness
of YOPO as an attack framework against various ATS
classifiers employing different training algorithms.

E. Attacking Multiple ATS Requests

We evaluated the effectiveness of YOPO in attacking
multiple ATS requests on a single webpage. Table 8 presents
the attack performance in this setting.

The second column in Table 8 represents the average
number of ATS requests on the selected webpages, and
the third to sixth columns show the ASRs with different
ϵ values. The experimental results demonstrate that YOPO
is capable of successfully attacking multiple ATS requests
within a single webpage, achieving average ASRs of greater
than 82%, 68%, and 56% for ADGRAPH, WEBGRAPH, and
ADFLUSH, respectively.

These results highlight the capability of the UAP that
YOPO generates because the UAP can be applied to mis-
classify multiple ATS requests on a single webpage. This
ability to target multiple ATS requests significantly reduces
the attack cost for the adversary, posing a critical threat to
the effectiveness of ATS classifiers.

TABLE 9: Performance of target ATS blockers trained with
a corrupted dataset.

Target Model Accuracy (%) Precision (%) Recall (%)

ADGRAPH 91.97 (0.67↓) 88.94 (0.96↓) 83.94 (1.36↓)
WEBGRAPH 95.17 (0.51↓) 92.54 (0.72↓) 91.26 (1.01↓)
ADFLUSH 95.53 (0.40↓) 94.85 (0.49↓) 89.98 (0.89↓)

F. Effect of Datasets

Bias in dataset. We built our dataset using Tranco’s Top-
10K websites. However, this dataset may lack network
requests to less popular ad networks, potentially limiting
its diversity. To evaluate the impact of this bias, we trained
all target ATS classifiers on a new dataset of 10K websites,
which consists of Tranco’s Top 1K sites and 9K randomly
sampled from the 1K to 100K rank range. We observed that
YOPO still achieved comparable ASRs to those from the
original dataset: 84.11%, 70.26%, and 62.65% for AdGraph,
WebGraph, and AdFlush, respectively.
Label corruptions. When constructing a training set, prior
studies [37, 43, 56, 58] labeled each network request based
on filter lists, which may introduce noisy labels [37]. To
evaluate the impact of label corruption on our attack results,
we intentionally assigned incorrect labels to 2,000 instances
in our training set and Dad.

Table 9 shows the performance of the ATS blockers
trained on this corrupted dataset. Against these ATS block-
ers, YOPO attained ASRs of 87.26%, 69.77%, and 63.40%
for ADGRAPH, WEBGRAPH, and ADFLUSH, respectively.
We observed a slight performance drop of less than 2%
across the three target ATS blockers. The ASRs showed
minimal changes, with decreases of 2.01% for ADGRAPH
and 1.44% for WEBGRAPH, and a 1.49% increase for
ADFLUSH. These findings indicate that label corruption has
a minimal effect on our attacks.

G. JS Snippets for 3-gram Frequency

Table 10 presents six types of 3-grams ADFLUSH lever-
ages for ATS classification and the corresponding JS snip-
pets YOPO appends to increase their frequency.

TABLE 10: Six JS snippets YOPO appends to increase the
3-gram frequency in the AST. Each gram consists of one of
the following: Expression (Expr), Identifier (Id), Statement
(Stmt), CatchClause (Catch), and Literal (Lit).

3-gram types JS snippet

(Expr, Id, Id) yopo = [btoa(‘1’), open, open];

(Expr, Expr, Stmt) yopo = [btoa(‘1’), btoa(‘1’), ];

(Id, Id, Id) yopo = [open, open, open];

(Stmt, Catch, Stmt) try { yopo = 1; } catch (e) { console.log(e); }
(Id, Expr, Lit) function yFunc() {}; yopo = [open, yFunc(), ‘A’];

(Id, Expr, Id) function yFunc() {}; yopo = [open, yFunc(), open];
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