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Abstract—Trigger set-based watermarking schemes have gained emerging attention as they provide a means to prove ownership for
deep neural network model owners. In this paper, we argue that state-of-the-art trigger set-based watermarking algorithms do not
achieve their designed goal of proving ownership. We posit that this impaired capability stems from two common experimental flaws
that the existing research practice has committed when evaluating the robustness of watermarking algorithms: (1) incomplete
adversarial evaluation and (2) overlooked adaptive attacks. We conduct a comprehensive adversarial evaluation of 11 representative
watermarking schemes against six of the existing attacks and demonstrate that each of these watermarking schemes lacks robustness
against at least two non-adaptive attacks. We also propose novel adaptive attacks that harness the adversary’s knowledge of the
underlying watermarking algorithm of a target model. We demonstrate that the proposed attacks effectively break all of the 11
watermarking schemes, consequently allowing adversaries to obscure the ownership of any watermarked model. We encourage
follow-up studies to consider our guidelines when evaluating the robustness of their watermarking schemes via conducting
comprehensive adversarial evaluation that includes our adaptive attacks to demonstrate a meaningful upper bound of watermark
robustness.
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1 INTRODUCTION

THE recent advent of deep neural networks (DNNs)
has accelerated the development and application of

diverse DNN models across various domains, including
image search [19], [53], security [56], [57], and self-driving
vehicles [50]. As machine learning technology evolves, the
structures of state-of-the-art DNN models have become
more complicated. This trend renders corporations with
fewer computational resources unable to train state-of-
the-art DNN models from scratch. For instance, the Im-
ageNet [43] dataset holds 14M images; training a high-
performing DNN model such as a ResNet-50 [22], which
consists of over 25M parameters, takes up to several weeks
with a machine equipped a Tesla M40 GPU. Moreover, it is
difficult to obtain a large number of high-quality training
instances pertaining to privacy-sensitive information, thus
rendering it infeasible for corporations with limited data
access to produce a superb model.

An adversary may attempt to steal such a superb model
and host another service that imitates the service provided
by the original model. This adversary poses a grave threat
to the model owner, who has invested resources and time
to develop a high-performing model. DNN model theft
thus infringes on the intellectual property (IP) of the model
owner and discloses the owner’s business secrets. Accord-
ingly, corporations seek a mechanism that proves the own-
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ership of their DNN models to protect their IPs and business
secrets.

Previous studies have proposed novel methods that
validate ownership of a given DNN model, thus protecting
the owner’s IP. Similar to watermarking algorithms devised
to protect the IP of multimedia content, such as images
and videos [28], [47], previous studies have proposed new
ways of embedding watermarks into a given DNN model
as well as algorithms that verify ownership [2], [10], [16],
[21], [24], [32], [36], [37], [42], [52], [59], [60]. The proposed
watermarking algorithms are categorized into two types
based on their methods of embedding watermarks: feature-
based and trigger set-based methods.

Feature-based schemes [10], [42], [52] require white-box
access to a model’s internal weight parameters. On the other
hand, trigger set-based watermarking methods [2], [16], [21],
[24], [32], [36], [37], [59], [60] have gained attention due to
their comparative merits of requiring black-box access for
ownership verification. Trigger set-based schemes harness
the common query interface of a suspect model. Specifically,
these watermarking methods leverage carefully created im-
ages, called key images. A model owner assigns an arbitrary
label, called a target label, to the key images and generates a
trigger set that consists of an arbitrary number of key image
and target label pairs. The owner then trains a model on
this trigger set as well as on the normal training data. When
verifying ownership, the model owner queries the model in
doubt with the key images and checks whether the model
returns the target label; this enables the owner to verify
the ownership by using remote queries. Previous trigger
set-based methods [2], [16], [21], [32], [36], [37], [59], [60]
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have in common that they use key images and target labels
but differ in how they generate key images or select target
labels.
Contributions. In this paper, we argue that trigger set-
based watermarking methods today [2], [16], [21], [24], [32],
[36], [37], [59], [60] do not achieve their goal of enabling
model owners to prove their ownership of watermarked
DNN models. We believe that previous studies have not
evaluated the robustness of their watermarking algorithms
to the fullest extent, thereby failing to demonstrate their
readiness for real-world deployment.

There exist two different strategies for evaluating the
robustness of a DNN model: (1) proving a theoretical lower
bound with approximation [3], [23] and (2) demonstrating
an upper bound via adversarial evaluation with strong
attacks. Previous watermarking studies [2], [16], [21], [24],
[32], [36], [37], [59], [60] have taken the latter approach,
demonstrating their robustness against selected attacks.
However, we observed two common flaws in previous
studies when evaluating the robustness of their trigger set-
based watermarking algorithms: (1) performing incomplete
adversarial evaluation and (2) overlooking an adaptive ad-
versary.
Incomplete adversarial evaluation. Because various attacks
have been introduced across diverse studies in various
contexts, we first consolidate and reorganize six existing
attacks. We then categorize the existing attacks into two
types, each of which corresponds to either of the adversary’s
two strategies: (1) claiming ownership by the adversary or
(2) obscuring the owner’s ownership.

We observed that no previous watermarking studies
have considered the complete set of the existing strong
attacks in their adversarial evaluation; previous studies
have not demonstrated their robustness against at least one
critical attack. Furthermore, we contend that adversarial
evaluation of attacks employing the adversary’s first strat-
egy (claiming ownership by the adversary) is unnecessary.
This strategy permits for a target model to contain water-
marks from its original owner as well as the adversary,
which demands additional proof to prove the adversary’s
ownership (§5.3.1). Therefore, there is no motive for the
adversary to employ this strategy alone unless she combines
the two aforementioned strategies by obscuring the original
watermarks and then injecting her own watermarks.

To this end, we perform our own adversarial evaluation
against 11 of the representative trigger set-based water-
marking schemes while taking into account the aforemen-
tioned problems. We demonstrate that they are weak against
at least two of these attacks. In particular, all of the 11
evaluated schemes were vulnerable to evasion [32], [35], [37]
and ownership piracy attacks [2].
Overlooked adaptive adversary. Previous studies focused
on evaluating their watermark robustness against selected
existing attacks. Meanwhile, a vast volume of recent re-
search on establishing the robustness of DNN models has
considered adaptive adversaries [4], [6], [13], [25], [41], [46].

To this end, we propose three novel attacks that a
strong adaptive adversary is able to conduct. Under the
assumption that this adversary knows the underlying wa-
termarking algorithm of a target model, we demonstrate
that the proposed adaptive attacks effectively break all

existing watermarking schemes, enabling the adversary to
obscure the ownership of a target model, regardless of its
underlying watermarking scheme. Therefore, our proposed
attacks contribute to demonstrating a new upper bound of
watermark robustness.

Overall, our experimental results demonstrate that trig-
ger set-based watermarking schemes today are far from
ready for real-world deployment. We recommend that fu-
ture research evaluate their watermarking methods against
at least all existing strong attacks, including our adaptive
attacks, and consider our guidelines when demonstrating
their watermark robustness via adversarial evaluation (§8).

To enable follow-on research to evaluate its water-
marking schemes, all of our attack algorithms and their
implementation will be available at https://github.com/
WSP-LAB/wm-eval-zoo.

2 BACKGROUND

2.1 DNN Ownership Verification

Since Uchida et al. [52] proposed the first approach to
embedding watermarks into neural networks, various wa-
termarking techniques have been proposed. In terms of their
watermark embedding methodology, these watermarking
techniques have been categorized into two types: trigger set-
based and feature-based methods. Trigger set-based meth-
ods utilize additional training samples as watermarks for
DNNs [2], [16], [21], [24], [32], [36], [37], [59], [60]. Feature-
based methods embed watermarks by modifying model
features [10], [42], [52].

Zhang et al. [59] proposed a representative trigger set-
based method. They trained a model to learn predefined
key pairs, each consisting of a key image and its target
label. Specifically, they assigned a false label with respect
to the ground-truth function to the key image. The gist of
their approach is that a model without the watermark is
highly likely to emit a ground-truth label rather than the
predefined false label for a given key image. Therefore, the
owner can prove the ownership afterward by querying the
model with the key images and checking whether the model
outputs the predefined false label. In this scheme, the key
images and their predefined false labels become a trigger set.

Other trigger set-based watermarking techniques em-
ploy more or less similar approaches, but Adi et al. [2] fur-
ther integrated this scheme with cryptographic primitives
to secure embedded watermarks. Recently, Jia et al. [24]
proposed to train a model in the direction of tightly coupling
the trigger set with a regular training set so that the trained
model becomes robust against model stealing attacks.

2.2 Target Watermark Schemes

Our goal is to evaluate the robustness of state-of-the-art
trigger set-based watermark schemes. Thus, we chose 11
representative watermarking algorithms, published at top
venues over the past five years [2], [16], [21], [24], [32],
[36], [37], [42], [59]. They share a common scheme that uses
trigger sets for verifying ownership.

Algorithm 1 summarizes how a trigger set-based water-
mark algorithm embeds the ownership proof of an owner
O into a DNN model. O provides a training set Dtrain and
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Algorithm 1: Embedding a trigger set into a DNN.
Input : A regular training set (Dtrain).

A set of source images (Isrc).
Output: A watermarked model (Mwm).

1 function EmbedWatermark(Dtrain, Isrc)
2 Ikey ← GenerateKeyImgs(Isrc)
3 Ltarget ← AssignTargetLabels(Ikey)
4 Dtrigger ← (Ikey , Ltarget)
5 Mwm ← TrainModel(Dtrain, Dtrigger)
6 return Mwm

a set of source images Isrc to the EmbedWatermark function.
Given Isrc, GenerateKeyImgs generates a set of key images
Ikey (Line 2). Note that these key images are intention-
ally designed to have a different underlying distribution
than that of Dtrain. Owing to the over-parameterization of
DNN models, they are capable of intentionally learning key
images along with Dtrain [14], [58]. The AssignKeyLabels
function assigns a target label Ltarget to each key image
(Line 3). We call generated key images together with their
assigned target labels as a trigger set Dtrigger. Finally, the
TrainModel function trains a model with both Dtrain and
Dtrigger to embed watermarks (Line 5). This step is anal-
ogous to backdoor attacks [11], [20] per se but different in
that this step is used to claim ownership of a DNN model,
instead of emplacing backdoors.

When O claims her ownership, she conducts the
following verification phase: O queries a model in doubt
with the key images. If the model is indeed the owner’s
genuine model, the model will output the predefined
target labels trained in the training phase. In Supplemental
Material 1 [30], we describe each of the 11 selected
watermarking algorithms. Throughout the paper, we denote
each algorithm as follows: WMcontent [59], WMnoise [59],
WMunrelated [59], WMmark [21], WMabstract [2],
WMadv [36], WMpassport [16], WMencoder [32],
WMexp [37], DeepSigns [42], and WMentangled [24].

3 ADVERSARY MODEL

We introduce an attack scenario in which an adversary
infringes on the IP of a model owner with an exfiltrated
DNN model, along with the notations that we use through-
out the paper. We then describe the prior knowledge of an
adversary regarding the exfiltrated model.

3.1 Attack Scenario

We assume two parties in the attack scenario: a model owner
O and an adversary A. O embeds watermarks into a neural
network model Morg by training Morg with a trigger set,
thus producing the watermarked model Mwm. O then hosts
a service by leveraging Mwm. On the other hand, A decides
to steal Mwm because training a precise model from scratch
requires a lot of computational resources as well as training
instances. For instance, A can steal Mwm by compromising
O’s machine learning service server or getting help from an
insider. Enumerating the feasible ways of A obtaining Mwm

is beyond the scope of this paper.
After stealing Mwm, A hosts a similar service as O using

a model Madv derived from Mwm. Note that the end goal of

A is to either (1) obscure O’s ownership of Madv or (2) claim
the ownership of Madv . Therefore, A may have built Madv

by transforming Mwm to achieve these goals. That is, Mwm

and Madv are not necessarily the same. We further elaborate
on attack scenarios with these goals in §5.1.

Finally, once O suspects that Madv is derived from Mwm,
O will attempt to prove their ownership of Madv . However,
if O watermarked Mwm with a feature-based scheme, O
must have white-box access to Madv to verify the owner-
ship. Considering that A certainly wants to hide the true
ownership of Madv , A will not provide white-box access to
Madv unless Madv is under litigation. Thus, in this paper, we
focus on trigger set-based watermark schemes, which only
require black-box access for ownership verification.

3.2 Adversarial Knowledge

We assume two adversaries according to their adversar-
ial knowledge: (1) a non-adaptive adversary and (2) an
adaptive adversary. A non-adaptive adversary knows that
the stolen target model Mwm has been watermarked but
does not know which specific watermarking algorithm was
used. On the other hand, an adaptive adversary knows
the exact watermarking algorithm that O harnessed to pro-
tect the model among various trigger set-based methods.
Specifically, the adaptive adversary only knows the internal
working of GenerateKeyImgs in Algorithm 1. She does not
know the source images (Isrc) for GenerateKeyImgs. She also
has no access to the original trigger set (Dtrigger) as well as
the training dataset (Dtrain).

Note that both adversaries share the same knowledge ex-
cept about the watermarking algorithm. As both adversaries
stole Mwm from O, they can observe the model inputs,
outputs, and structure. Additionally, we assume that they
have access to 50% of a testing set, which is required to
launch attacks against Mwm. Note that this data accessible
by the adversaries is completely disjointed from the original
training set, assuming the least privilege granted to them.
Previous studies [2], [32], [42], [59] assume similar capa-
bilities for the adversary to conduct different attacks. We
further considered adversaries who have access to fewer
data in Supplemental Material 4 [30].

4 MOTIVATION

We argue that today’s evaluation practice of demonstrating
watermark robustness exhibits two common shortcomings:
incomplete adversarial evaluation (§4.1) and overlooked
adaptive attacks (§4.2).

4.1 Incomplete Adversarial Evaluation

We observe that previous studies on trigger set-based water-
marks have evaluated the robustness of their methods using
arbitrary choices of the existing attacks, thus demonstrating
an upper bound on their robustness only to the selected
attacks. Due to the nature of adversarial evaluation, the
existence of one effective attack denotes the failure to protect
the IP of O, effectively breaking a target watermarking
scheme. Therefore, it is paramount to account for all existing
attacks to demonstrate meaningful robustness.
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TABLE 1: Summary of adversarial evaluations performed
by previous studies.
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Fine-tuning ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Model Stealing ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Parameter Pruning ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Evasion ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Ownership Piracy ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Ambiguity ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

# of Evaluated Attacks 3 3 3 0 2 2 3 2 2 3 5

Table 1 summarizes the evaluations performed by the
previous watermark research in terms of applicable existing
attacks. Note from the table that no previous studies eval-
uated their approaches against a complete set of attacks.
Among the six attacks, 10 out of 11 prior watermark studies
only considered at most three attacks and missed other at-
tacks in their evaluations. Moreover, model stealing attacks
have never been evaluated in any previous studies.

We emphasize that all six attacks examined herein have
existed since each watermarking algorithm was first pro-
posed. In other words, ever since each watermarking algo-
rithm was first proposed, their robustness against several
existing state-of-the-art attacks has remained unexplored.
Therefore, it is still questionable whether state-of-the-art wa-
termarking algorithms can successfully work as a defense
mechanism against various real-world threats.

Furthermore, incomplete adversarial evaluation be-
comes problematic when comparing the robustness of dif-
ferent watermarking algorithms. Because the previous stud-
ies evaluated watermarking algorithms against arbitrarily
chosen attacks, they have failed to demonstrate which algo-
rithms are more robust than others in general. Even though
one algorithm is robust against a given attack, it can be
broken by another attack against which other algorithms
are known to be secure. We believe that this incomplete
evaluation practice stems from the lack of prior systematic
studies that enumerate all the applicable attacks. Thus, in
this paper, we summarize these attacks (§5.1).

4.2 Overlooked Adaptive Attacks

A vast volume of recent research on securing machine
learning models has striven to demonstrate a meaningful
upper bound of its robustness [4], [6], [13], [25], [41], [46]. To
this end, they have focused on strong adaptive adversaries
who know the adopted defense algorithms for securing the
model. Nevertheless, the previous studies on watermarking
algorithms have not yet taken into account adaptive attacks
in their adversarial evaluation. Therefore, to challenge the
robustness of watermarking algorithms to the fullest extent,
we propose novel adaptive attacks in the context of DNN
watermarking.

Note that the existing attacks in Table 1 are non-adaptive
attacks. In addition to these attacks, we consider adaptive

attacks against Mwm. The adaptive adversary mounts the
same attacks as non-adaptive adversaries. She leverages her
prior knowledge of the underlying watermarking algorithm
and adapts these attacks, thus mounting strong attacks.

5 ATTACK ALGORITHMS

We now introduce state-of-the-art attacks that non-adaptive
and adaptive adversaries (§3) can conduct. We consolidate
six of the existing attacks spread across various studies in
the literature and systematically categorize them from the
perspective of the goal that the adversaries aim to achieve
(§5.1). We then briefly describe each existing attack (§5.2–
§5.3). Finally, we present novel attacks that the adaptive
adversary is able to conduct via leveraging the knowledge
of a target watermarking algorithm (§5.4).

5.1 Attack Overview
An adversary A can devise two different scenarios to con-
ceal the fact that A stole Mwm from O; A can decide to
either obscure O’s ownership or claim her ownership.
Obscuring O’s ownership. The goal of A in this scenario
is to thwart O’s ownership verification by modifying Mwm,
such as by training a counterfeit model or detecting key
images. As O fails to verify their ownership in this scenario,
A can successfully obscure O’s ownership and insist that
Mwm is not watermarked. To achieve this goal, A can launch
fine-tuning, model stealing, evasion, or parameter pruning
attacks.
Claiming ownership by A. Another scenario that A can
consider is to claim the ownership of Mwm by implanting
a new trigger set into Mwm or generating a set of fake
key images that can trigger the target labels. Note that A
does not aim to damage O’s ownership and O’s watermark
may persist. Therefore, both O and A can claim the own-
ership based on the respective trigger set, which results
in conflicting ownership arguments. Since it is infeasible
to decide which one is fraudulently claiming ownership
solely based on their key images and target labels, previous
studies [2], [16], [24], [36], [42], [59] have considered this to
be a plausible strategy. To realize this scenario, A is able to
conduct one of the following two attacks: ownership piracy
or ambiguity attacks.

5.2 Obscuring O’s Ownership
Fine-tuning attack. To remove the original watermark, A
can fine-tune Mwm with a new training set [2], [12], [16],
[24], [32], [42], [59]. Specifically, A trains Mwm with a new
small set that shares an underlying distribution with the
original training set, thus preventing Mwm from losing its
original functionality. At the same time, A does not include
any data that are distant from the underlying distribution in
the new training set in the expectation that Mwm will forget
O’s key images.
Model stealing attack. A in model stealing attacks [24],
[38], [51] aims to copy the functionality of Mwm into a new
model, except for the capability of remembering the trigger
set. To this end, A labels arbitrary images by querying
Mwm. Using the constructed training set, A trains a model
from scratch. The new model may forget O’s key images
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Morg Mwm Madv

Owner O Adversary A

Fig. 1: The difference between models accessible to A who
aims to claim her ownership and O.

because the distribution represented by the arbitrary images
is highly likely not to include O’s trigger set.
Parameter pruning attack. As an attempt to make Mwm

forget a trained trigger set, A in parameter pruning attack
scenarios [16], [24], [36], [37], [42], [59] prunes certain pa-
rameters of Mwm. The original goal of model pruning is
to reduce the number of redundant parameters in DNNs.
However, recall that model watermarking is possible due
to the over-parameterization of DNNs. A expects Mwm to
lose the capability of remembering the key images after
the pruning of some trained parameters, thus causing O’s
ownership claim to fail.
Evasion attack. A conducting evasion attacks [24], [32], [35],
[37] may attempt to detect key images on the fly when
O queries Mwm. Recall that key images do not belong to
the underlying distribution of regular images. Thus, A can
distinguish key images by checking the distribution of a
given image. Once A finds a suspicious image, she can
evade the verification process by returning a random label.

5.3 Claiming Ownership by A
Ownership piracy attack. In ownership piracy attacks [2],
[24], [36], [42], A attempts to implant her own new trigger
set into Mwm to claim the ownership. Specifically, A pre-
pares a new trigger set that is different from the original and
then retrains Mwm with the new trigger set. After training,
Madv will classify A’s key images as their target labels, and
A can fraudulently claim the ownership of Madv , which
leads to conflicting ownership arguments.
Ambiguity attack. To claim ownership, in an ambiguity
attack scenario [16], [17], [59], A generates a set of coun-
terfeit key images that can trigger the target labels. Similar
to model inversion attacks [17], A gradually updates reg-
ular images by leveraging gradient descent so that Mwm

classifies the updated images as their predefined labels.
The core difference of this attack compared to ownership
piracy attacks is that the adversary in this scenario does
not modify Mwm but creates counterfeit key images by
leveraging Mwm.

Assume a scenario where A launches an ambiguity
attack against Mwm trained on CIFAR-10 and watermarked
using WMcontent. A can add quasi-imperceptible pertur-
bations to “apple” images taken from CIFAR-100 such that
Mwm classifies each image as an “airplane.” In this scenario,
A can verify the ownership based on WMunrelated using the
perturbed images as key images.

5.3.1 Shortcomings of Evaluation
Recall from §5.1 that ownership piracy and ambiguity at-
tacks inevitably cause a stalemate between A and O with

conflicting ownership arguments based on their respective
watermarks. In this regard, previous studies [2], [16], [24],
[36], [42], [59] have demonstrated the degree to which their
watermarking algorithms can withstand these attacks. How-
ever, we claim that there exists a straightforward solution
to manifest the true owner in these attack scenarios; thus,
their evaluation should have been performed assuming a
different scenario.

We note that there exists a clear difference between the
capabilities of O and A, as shown in Figure 1. Because A
steals the model after O watermarks Morg , A cannot access
Morg which does not have any watermarks. Accordingly,
in court, a judge may request that both O and A provide
a functional model without any watermarks. Then, O can
prove the ownership by providing Morg , which A cannot
provide. A will lose this ownership dispute game due to the
inability to present a functional model that remembers none
of the key images and achieves a test accuracy comparable
to Madv at the same time.

We emphasize that A in ownership piracy or ambiguity
attack scenarios does not possess the aforementioned func-
tional model without key images. One may argue that A
can present this model to the court by conducting an attack
that removes O’s watermark. However, if A was able to
remove O’s watermark, the ownership dispute would not
have occurred in the first place because the attacker would
have used the watermark-removed model for hosting the
service.

This verification leveraging the adversary’s inability of
presenting a watermark-free model is analogous to that in
the traditional image and video watermarking research [1],
[15]. To prevent the threat of an adversary claiming owner-
ship by means of blending her watermarks on top of the
owner’s watermarked image, it is common in the verifi-
cation to ask the adversary to present the original image
without any watermarks.

Therefore, we propose the following more plausible
scenario in which A aims to obscure O’s ownership and
claim her ownership at the same time. To achieve both goals
together, we insist that A should first mount an attack that
removes O’s watermark and then launch attacks devised
to claim A’s ownership against the watermark-removed
model, thus constructing a model that only remembers A’s
trigger set. Unfortunately, no previous studies have consid-
ered these attacks together. On the contrary, we considered
this new scenario by performing ownership piracy and
ambiguity attacks against target models after removing O’s
watermark (§7.4).

5.4 Adaptive Attacks

We argue that the robustness of watermarked models
should not be undermined by the adversary’s prior knowl-
edge of target watermarking algorithms. Considering that
any insiders are able to leak the algorithms, solely de-
pending on the security by obscurity is not a desirable
goal that follow-up watermarking studies should pursue.
Carlini et al. have also emphasized the necessity of evalua-
tions against adaptive attacks for demonstrating adversarial
robustness [5].



6

To this end, we propose novel adaptive attacks in which
the adversary can adapt their attacks to a given water-
marking scheme. In adaptive attacks, the adversary aims to
obscure O’s ownership by modifying Mwm to remove O’s
trigger set. For this, the adaptive adversary removes O’s
trigger set by employing the same fine-tuning, model steal-
ing, and pruning attacks (§5.2). The key difference is that
this adversary engineers a new trigger set that plays a role
similar to O’s trigger set against Mwm and leverages this
new trigger set when launching the aforementioned three
watermark removal attacks. In the following, we explain
how the adversary can adaptively create the new trigger
set based on Mwm’s watermarking algorithm.

We propose a general framework that the adaptive ad-
versary leverages to create a new trigger set. Since the
adversary seeks to generate new key images that serve as
O’s key images, the new key images should have an under-
lying distribution similar to that of the original key images.
At the same time, the new key images should be able to
trigger attacker-specified target labels. To achieve these two
goals, we propose to train an autoencoder such that (1) the
output images have a distribution similar to images that
the watermarking scheme of Mwm generates and (2) Mwm

classifies each output image as a target label. Note that
the adaptive adversary can train such an autoencoder by
leveraging her knowledge about the target watermarking
scheme and white-box access to the stolen target model.
Specifically, given a source image x and a target label yt, the
adversary trains the autoencoder to minimize the following
loss function.

x′ = AutoEncoder(x)

L(x, yt) = Lae(x, x
′) + λ · Lf (yt, f(x

′))
(1)

In Equation 1, the loss function has two terms: Lae and
Lf . These terms are designed to achieve the autoencoder’s
two training objectives, respectively. Lae refers to a relation-
ship between the input and output images that the adver-
sary can adaptively define based on a target watermarking
scheme, and Lf refers to the classification error of a target
model.

To perform strong attacks, it is important to choose
well-suited source images x and a loss function Lae so
that the autoencoder is able to learn how a target wa-
termarking scheme performs the GenerateKeyImgs function
in Algorithm 1 with high fidelity. For instance, consider
WMabstract [2] as a target watermarking scheme. In this
case, the adversary can use arbitrary abstract images col-
lected from the Internet as source images and choose the
mean squared error loss function as Lae so that the output
images x′ become abstract images that can trigger target
labels when given to Mwm. We describe the source images
and loss functions that we chose to model each of our target
watermarking schemes in Supplemental Material 2 [30].
Note that we have devised fine-tuning, model stealing, and
parameter pruning adaptive attacks for each watermarking
scheme, yielding 30 attack variants (3 attacks × 11 schemes).

Besides the source images x and the loss function Lae,
the adaptive adversary also needs to specify the target label
yt to train this autoencoder but has no prior knowledge
about the target labels of the original key images. Therefore,
the adversary repeatedly trains this autoencoder for each

class while assuming the current class as a target label.
Then, the adversary collects trigger set pairs (x′, yt) from all
trained autoencoders and leverages all the collected pairs
when initiating the watermark removal attacks. The adver-
sary expects these trigger set pairs to effectively contribute
to removing the original trigger set of a target model.

6 IMPLEMENTATION

We implemented the target watermarking algorithms and
attacks using TensorFlow 2.7.0. However, publicly avail-
able code for WMpassport and WMentangled are written in
PyTorch 1.10.1 and TensorFlow 1.14.0, respectively. Since
it requires a huge engineering effort to migrate them to
TensorFlow 2.7.0, we used the corresponding frameworks
to implement the attacks targeting these two schemes. The
remaining nine target algorithms were implemented by
referring to their papers and code if available.

7 EVALUATION

In this section, we evaluate the robustness of the 11 trigger
set-based watermarks. We first explain the datasets and
DNN models that we used (§7.1) and demonstrate how we
successfully implanted watermarks into the DNN models
using the target watermark schemes in our experimental
settings (§7.2). We then conduct the adversarial evaluation
of each attack that we have discussed so far (§7.3.1–§7.4.2).

7.1 Datasets and Target Models
Dataset. We use the MNIST, GTSRB, CIFAR-10, TinyIma-
geNet, and CIFAR-100 datasets. All the prior studies have
only evaluated their algorithms using at most four datasets.
We use these five widely adopted datasets of various sizes
for extensive evaluation.
DNN models. For MNIST and TinyImageNet, we prepared
LeNet-5 models [29] and EfficientNetV2S models [49]. For
the remaining datasets, we implemented ResNet-56 mod-
els [22]. However, we employed ResNet-18 for all five
datasets to evaluate WMpassport and WMentangled in the
same setup as provided by the authors (recall §6). Note
that these models have been widely adopted in previous
studies [2], [16], [21], [32], [37]. Since these three models
show outstanding performance, they are highly likely to be
deployed in real-world cases, rendering them good target
models for watermark implantation.

7.2 Embedding Watermarks into the DNN Models
To build Mwm, we watermarked the DNN models trained
on the five datasets by leveraging each algorithm, yielding
a total of 55 target DNN models (5 datasets × 11 schemes).
Note that each Mwm should maintain its classification ac-
curacy and emit the predefined target labels for given key
images.

Table 2 shows the recall rate of watermark key images
and accuracy for the test instances on Mwm. The second
to the sixth columns summarize the trigger set recall of
Mwm across datasets, the fraction of the watermark key im-
ages that are correctly classified as their target labels. Most
Mwm correctly remember their trigger sets and classify key
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TABLE 2: Performance of the target models Mwm on four
datasets: MNIST (MN), GTSRB (GT), CIFAR-10 (C10), Tiny-
ImageNet (TI), and CIFAR-100 (C100). Numbers in paren-
theses denote the degree to which test accuracy dropped
compared to a model without watermarks.

Trigger Set Recall (%) Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100

Content 99.90 100 100 100 100
98.85 94.75 93.09 77.16 71.71
(-0.21) (-0.28) (0.12) (-0.74) (-0.66)

Noise 100 100 100 100 100
99.04 94.89 93.20 78.55 72.77
(-0.02) (-0.13) (0.23) (0.65) (0.40)

Unrelated 99.94 100 100 100 100
99.02 94.32 92.91 78.49 72.51
(-0.04) (-0.70) (-0.06) (0.59) (0.14)

Mark 98.72 99.72 99.64 99.90 94.79
98.94 96.56 92.42 73.96 70.85
(-0.12) (1.53) (-0.55) (-3.94) (-1.52)

Abstract 100 100 100 100 100
99.02 95.08 92.93 78.08 72.46
(-0.04) (0.06) (-0.04) (0.18) (0.09)

Adv 100 100 100 99.00 100
99.21 97.21 91.79 77.76 71.78
(0.15) (2.18) (-1.18) (-0.14) (-0.59)

Passport 84.00 100 82.00 100 93.00
99.12 94.29 88.63 60.35 63.17
(-0.23) (0.95) (-2.72) (-3.12) (-4.87)

Encoder 100 96.94 99.20 99.80 99.20
98.98 93.13 92.67 77.15 72.19
(-0.08) (-1.90) (-0.30) (-0.75) (-0.18)

Exp 100 100 100 100 100
99.07 94.54 92.62 77.30 71.53
(0.01) (-0.49) (-0.35) (-0.60) (-0.84)

DeepSigns 100 100 100 100 100
99.09 95.79 91.69 77.21 70.27
(0.03) (0.76) (-1.28) (-0.69) (-2.10)

Entangled 100 81.25 15.54 60.94 62.76
98.84 95.26 93.10 56.81 73.45
(0.58) (1.22) (3.08) (3.84) (6.33)

samples with a high recall of over 99%. The seventh to the
eleventh columns describe the test accuracy for Mwm as well
as the magnitude of drops in test accuracy in comparison
to the corresponding models without any watermark. We
observe that most Mwm preserve their test accuracy after
watermarking, showing only a slight drop of within 4%.

However, the models watermarked using WMpassport

and WMentangled yielded relatively low trigger set recall
levels compared to the other target models. Note that we
used the original WMpassport and WMentangled implemen-
tation, resulting in no differences between our implemen-
tation and that of the authors. Since WMpassport utilizes
abstract images as its key images, we believe that this result
stems from using a different set of abstract key images.
For the WMentangled models, our results accord with the
trigger set recall levels reported by Jia et al. [24]. We believe
that the initial trigger set recalls of the WMentangled models
are already too low for ownership claims. In the remaining
sections, we evaluate the presented attacks using these
watermarked models.

7.3 Obscuring O’s Ownership

An adversary seeking to obscure O’s ownership attempts
to thwart O’s ownership verification process. For this, the
adversary can employ fine-tuning, model stealing, evasion,
or parameter pruning attacks against Mwm, thus generating
Madv with a low O’s trigger set recall. At the same time,
the test accuracy of Madv should not drop significantly as
the adversary needs to host a functional service by lever-
aging Madv . We now evaluate each attack in this category
assuming both non-adaptive and adaptive adversaries.

TABLE 3: Trigger set recall (%) of Madv after fine-tuning
attacks.

Non-adaptive Attack Adaptive Attack

MN GT C10 TI C100 MN GT C10 TI C100

Content 57.02 0.36 24.54 0.00 13.20 39.74 53.96 26.92 0.00 75.20
Noise 5.93 84.46 99.14 0.40 93.80 0.36 5.63 3.78 0.40 10.20
Unrelated 99.34 100 99.10 99.40 92.80 32.76 99.77 17.26 15.80 0.00
Mark 40.28 8.95 3.86 5.64 2.29 19.77 25.87 8.02 1.25 1.46
Abstract 51.00 51.00 60.00 100 26.00 45.00 83.00 54.00 100 23.00
Adv 35.00 79.00 24.00 66.00 13.00 14.00 8.00 12.00 6.00 2.00
Passport 14.00 43.00 14.00 74.00 3.00 13.00 43.00 17.00 75.00 3.00
Encoder 20.00 4.08 20.00 7.00 8.00 17.00 7.14 20.60 1.60 5.60
Exp 6.00 0.00 1.00 5.00 1.00 7.00 0.00 2.00 9.00 0.00
DeepSigns 11.00 1.00 8.00 1.00 0.00 11.00 1.00 12.00 0.00 2.00
Entangled 99.81 27.34 4.57 2.68 40.89 97.42 33.59 1.48 4.69 23.18

7.3.1 Fine-tuning Attack

Non-adaptive attack. A non-adaptive adversary tunes Mwm

on a dataset that does not include any key images, thus
constructing another model Madv . As A has access to 50%
of a test set, we leveraged this set to fine-tune Mwm; how-
ever, using this set alone might decrease the test accuracy
of Madv . Therefore, we also used an extra set of images
when simulating fine-tuning attacks. Similar to the method
proposed by Chen et al. [12], we collected arbitrary images
and labeled each of them with the output of Mwm. For Mwm

trained on MNIST, we collected all images from the Fashion-
MNIST dataset [55]. We took images from CIFAR-100 for
fine-tuning the GTSRB, CIFAR-10, and TinyImageNet mod-
els. For Mwm trained on CIFAR-100, we collected images
from CIFAR-10.
Adaptive attack. In addition to these training instances, the
adaptive adversary harnesses the autoencoder-generated
key images to make Mwm unlearn O’s trigger set. Recall
from §5.4 that this adversary collects x′, which is designed
to resemble O’s key images that trigger yt. Therefore, the
adversary assigns a random label other than yt to x′ and
provides this pair as a training instance for fine-tuning
attacks, expecting that Madv will interpret O’s key images
as the adversary-chosen random classes. For training each
autoencoder, it takes 3–12 minutes for each class, depending
on the dataset.

When fine-tuning Mwm, we optimized Mwm using
Adam [27] and trained Mwm for 10 epochs. We fixed the
learning rates at 0.01, 0.0001, and 0.0005 for MNIST, Tiny-
ImageNet, and the other datasets, respectively, except for
one case: for Mwm trained on the CIFAR datasets and wa-
termarked using WMpassport, we used a fixed learning rate
of 0.0001. We selected these learning rates after exploratory
experiments.

Table 3 presents the trigger set recall of Madv , which
is the resulting model after conducting fine-tuning attacks
on Mwm. Note that it is challenging to set a minimum
trigger set recall sufficient to prove O’s ownership. Thus, in
the table, we colored the cells of vulnerable watermarking
schemes that rendered a trigger set recall lower than the
threshold varying from 10% to 80%. The gradations rep-
resent the extent to which the model is vulnerable to the
attacks. We excluded Madv that exhibited over a 5% drop
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Fig. 2: Pairs of O’s key image and an autoencoder-generated
key image. The left and the right halves show examples of
WMcontent and WMnoise, respectively.

in test accuracy because these models do not suffice for the
adversary’s goal of hosting functional services. In Supple-
mental Material 5 [30], we include an expanded version of
Table 3 that displays the test accuracies of Madv as well as
their trigger set recalls.

The left half of the table shows the results for the non-
adaptive attacks. When we set 10% as the minimum trigger
set recall to prove ownership, the non-adaptive fine-tuning
attacks only worked against the 19 target models. However,
the number of vulnerable target models jumped to 36 in
total when the minimum requirement was set to 80%. In-
terestingly, all models watermarked using WMmark and
DeepSigns were vulnerable to this fine-tuning attack. On
the other hand, all models watermarked with WMunrelated

were robust, demonstrating trigger set recalls of over 92%
for all the datasets.

The right half of the table summarizes the results for the
adaptive attacks. Note in the table that the adaptive attacks
further destroyed schemes that were robust to the non-
adaptive attacks. For instance, WMnoise and WMunrelated

models exhibited significant trigger set recall drops. On
the other hand, the GTSRB model with WMunrelated was
robust to the adaptive attack. Recall that we collected an
extra set of images when conducting fine-tuning attacks to
preserve the test accuracy. We observed that this extra set
hindered unlearning the trigger set of the GTSRB model
with WMunrelated. Specifically, we found that if we exclude
this set when launching the attacks, we can successfully
decrease the trigger set recall down to 0% without loss
of test accuracy. Considering that the adversary can either
include or exclude this extra set when launching fine-tuning
attacks, we conclude that WMunrelated is also vulnerable to
the adaptive fine-tuning attack.

We also observed that adaptive attacks are worse than
non-adaptive attacks in several cases. For instance, the
non-adaptive and adaptive fine-tuning attacks against the
GTSRB model with WMcontent reduce the trigger set recall
to 0.36% and 53.96%, respectively. We carefully analyzed
these cases and founded that the performance of autoen-
coders used for conducting adaptive attacks varies consid-
erably based on the target watermarking algorithms. Fig-
ure 2 shows examples of O’s key images and autoencoder-
generated images. Note from the figure that the autoen-
coders trained to simulate WMnoise is capable of generating
an image that has a distribution similar to that of O’s key
images. On the other hand, the autoencoders reported poor
performance against a watermarking scheme embedding
contents, which requires more sophisticated trigger gener-
ation. We thus conclude that this performance difference
has affected the success of adaptive attacks in removing the
embedded trigger sets.

TABLE 4: Trigger set recall (%) of Madv after model stealing
attacks.

Non-adaptive Attack Adaptive Attack

MN GT C10 TI C100 MN GT C10 TI C100

Content 82.94 0.00 2.04 1.00 0.80 28.37 0.05 1.18 1.80 0.40
Noise 0.21 59.19 3.60 2.20 45.60 0.09 6.76 4.04 0.20 87.60
Unrelated 99.76 100 95.26 54.60 0.00 34.94 100 9.02 20.20 0.00
Mark 11.57 5.10 2.32 0.66 0.90 7.66 7.27 6.81 0.81 1.46
Abstract 41.00 35.00 24.00 65.00 2.00 39.00 48.00 27.00 66.00 2.00
Adv 23.00 70.00 8.00 31.00 11.00 17.00 0.00 16.00 17.00 1.00
Passport 7.00 34.00 19.00 60.00 2.00 7.00 37.00 16.00 57.00 1.00
Encoder 9.67 2.55 12.60 0.80 1.80 9.33 2.30 13.20 1.00 1.40
Exp 1.00 0.00 2.00 0.00 0.00 4.00 0.00 2.00 0.00 2.00
DeepSigns 10.00 3.00 6.00 0.00 1.00 6.00 2.00 11.00 0.00 0.00
Entangled 99.93 75.78 52.02 8.04 35.68 96.20 25.00 37.62 6.70 21.35

We emphasize that none of the previous studies con-
ducted the adaptive attack even though they are mostly
vulnerable to this attack. Furthermore, although eight out of
the 11 watermarking algorithms had already been evaluated
against fine-tuning attacks in previous studies [2], [16], [24],
[32], [42], [59], our analysis reveals that many of them
are still vulnerable. This implies that fine-tuning attacks
that previous studies have conducted were too weak to
construct a meaningful upper bound of their watermark-
ing algorithms. Therefore, we recommend that follow-up
studies evaluate their schemes against fine-tuning attacks
with sufficiently strong settings and demonstrate the extent
to which their watermarks can withstand attacks without
being removed. We further investigate various attack set-
tings that can affect the strength of fine-tuning attacks in
Supplemental Material 3 [30].

7.3.2 Model Stealing Attack
In model stealing attacks, an adversary does not have
enough training instances to train a new model from scratch.
Thus, the adversary prepares a set of arbitrary images
and leverages Mwm to label these images. The adversary
then trains Madv from scratch on these instances, thereby
copying Mwm’s functionality except for the capability of
remembering the trigger set. We consider both non-adaptive
and adaptive adversaries in evaluating the target models
against model stealing attacks.
Non-adaptive attack. To collect training instances, we took
the same approach as we did for fine-tuning attacks (§7.3.1).
For training, we selected Madv to have the same model
structure as Mwm. Note that the adversary knows the exact
structure of Mwm because Mwm is already in her hands.
We performed model stealing attacks by training this new
model from scratch with the collected dataset.
Adaptive attack. The adaptive adversary in this attack
scenario also leverages the trigger set created with the
autoencoders to preclude Madv from learning O’s trigger
set. The adversary prepares training instances in the exact
same way as the adaptive adversary in fine-tuning attacks
and appends them to the training set for training Madv .
Because the adversary feeds x′ with a random label to Madv

for its training, this new model cannot learn O’s trigger set.
Table 4 summarizes the experimental results of model

stealing attacks. We shaded (in red) the cells according to the
same criteria as we did for Table 3. The left half of the table
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TABLE 5: Trigger set recall (%) of Madv after parameter
pruning attacks.

Non-adaptive Attack Adaptive Attack

MN GT C10 TI C100 MN GT C10 TI C100

Content 99.87 100 100 99.80 100 64.95 100 100 0.00 100
Noise 100 100 100 99.00 100 97.29 0.27 100 0.00 58.20
Unrelated 99.38 100 100 70.20 100 17.22 0.81 90.98 100 4.00
Mark 97.40 99.64 99.64 41.65 94.63 69.03 97.03 96.97 51.80 69.96
Abstract 73.00 100 100 74.00 100 78.00 95.00 97.00 3.00 98.00
Adv 91.00 100 100 41.00 100 96.00 7.00 97.00 12.00 94.00
Passport 80.00 100 71.00 99.00 87.00 84.00 94.00 82.00 94.00 91.00
Encoder 96.50 96.94 99.20 80.80 98.60 99.00 91.07 98.20 0.30 92.80
Exp 92.00 100 100 4.00 100 92.00 99.00 98.00 0.00 97.00
DeepSigns 39.00 89.00 100 2.00 98.00 81.00 98.00 99.00 12.00 78.00
Entangled 100 83.59 17.81 70.09 61.98 99.95 71.88 5.33 2.68 57.81

presents the results from the non-adaptive attacks. Overall,
the target models underwent a more drastic trigger set recall
drop compared to fine-tuning attacks. However, the target
models trained on the CIFAR-100 and TinyImageNet dataset
experienced a huge test accuracy drop along with a trigger
set recall drop, which indicates that our model stealing
attacks are ineffective against target models with a large
number of classes. As a result, assuming the minimal trigger
set recall to be 10%, 16 target models were vulnerable to this
attack. When we consider 80% as the minimal requirement,
26 models failed to verify O’s ownership. Among the 11
watermarking schemes, Mwm with WMexp and DeepSigns
were the most vulnerable models, showing a trigger set
recall of below 10% after the attacks.

The right half of the table shows the results of the
adaptive model stealing attacks. Considering 10% as the
required minimal trigger set recall, the watermarks em-
bedded in 18 out of the 55 target models were destroyed
by the adaptive attack. We also note that the trigger set
recalls further decreased in most target models compared
to the non-adaptive attack. Moreover, when we raise the
bar to 80%, all 11 watermarking schemes were broken by
this attack. Although WMunrelated was robust against the
non-adaptive model stealing attack, it was destroyed by the
adaptive attack.

Note that most target models were vulnerable to the
non-adaptive and adaptive model stealing attacks. This
means that the current watermark evaluation practice does
not consider real-world threats properly. We stress that
researchers should evaluate robustness against the complete
set of attacks, including model stealing attacks, and raise the
bar of watermarking schemes’ robustness with aggressive
evaluation that considers an adaptive adversary.

7.3.3 Parameter Pruning Attack
The non-adaptive and adaptive adversaries in parameter
pruning attacks attempt to prune the parameters of Mwm.
Non-adaptive attack. To erase O’s watermark, the non-
adaptive adversary prunes p% of the smallest parameters
in Mwm, thus building a new model Madv .
Adaptive attack. In adaptive pruning attacks, the adversary
identifies parameters that contribute to the classification
of O’s trigger set by leveraging the autoencoder-generated
trigger set and then removes those parameters. Specifically,
the adversary observes the differences between the neuron

activations of Mwm when x and x′ are given. Note that
the neurons that render different behaviors between these
images can be regarded as trigger set-related. The adversary
thus prunes p% of parameters that showed the greatest dif-
ferences. After pruning, Madv becomes non-reactive to O’s
trigger set. When pruning parameters, we only considered
parameters that belong to the fully connected layers.

Table 5 presents the trigger set recall of Madv after
parameter pruning attacks. We evaluated the effect of this
attack with six different values of p: 5, 10, 20, 40, 60, and
80. Among the results for the six different p values, we only
show the results that reported the lowest trigger set recall
with a test accuracy drop of less than 5%. We colored the
cells according to the same criteria that we set for Table 3.
The left half shows the trigger set recall after the non-
adaptive attacks. In general, we found that the watermark-
ing schemes are robust against this attack, which accords
with the experimental results of previous studies [16], [24],
[36], [37], [42], [59]. Seven out of 55 target models showed
a trigger set recall of less than 80%; only two models were
weak against this attack when we considered 40% as the
minimal recall required to prove ownership.

The right half of the table summarizes the experimental
results after the adaptive pruning attacks. The adaptive
pruning attacks were not as strong as other adaptive attacks;
however, the adaptive attack damaged five target models
that were robust to the non-adaptive attacks. Furthermore,
note that the WMunrelated models tend to demonstrate
a significant drop in the trigger set recall, although they
experience non-trivial test accuracy drops as well (see Sup-
plemental Material 5 [30]). These results suggest the neces-
sity of our adaptive pruning attacks against the existing
watermarking algorithms.

7.3.4 Evasion Attack

The goal of A in performing an evasion attack is to distin-
guish queries that have key images from normal queries.
Once a key image is identified, the adversary may return
random labels to drop the trigger set recall, thus obscuring
O’s ownership.

To assess A’s capability of distinguishing key images
from regular images, we trained autoencoders for each class
of images with 50% of a test set. For instance, we prepared a
total of 100 autoencoders for CIFAR-100. We then evaluated
whether the trained autoencoders could output an image
similar to the input image. Note that these autoencoders
are able to reconstruct normal images well but fail with key
images as the autoencoders are trained on regular images.
To decide whether the autoencoders fail to reconstruct given
images, we computed three metrics, i.e., L1 norms, L2

norms, and Jensen-Shannon divergence, between the input
and output images as in the approach of [35].

Specifically, given an image, we query Mwm and record
the output class. We then reconstruct the image with the
autoencoder of the output class and compute the metrics. If
all three metrics computed from the image are lower than
the thresholds, we consider the given image to be a normal
one. We set the thresholds such that false-positive rates are
at most 0.1% on the set of images used for training the
autoencoders.
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TABLE 6: Trigger set detection accuracies when performing
evasion attacks against the target models. A table cell in the
red background represents a vulnerable model that enables
A to detect the trigger set with an accuracy of over 85%,
and the gradations represent the extent to which the model
is vulnerable to evasion attacks.

Detection Acc. (%)

MNIST GTSRB C10 TI C100

Content 98.31 97.57 98.62 79.60 89.20
Noise 98.38 97.75 99.64 90.20 90.30
Unrelated 98.32 97.91 49.73 39.40 86.70
Mark 98.29 93.18 93.88 75.20 86.38
Abstract 99.50 87.00 67.50 60.00 81.00
Adv 99.50 97.50 100 93.50 91.00
Passport 99.50 89.00 60.50 50.00 78.50
Encoder 94.75 85.59 89.40 79.35 87.10
Exp 62.50 85.50 78.00 55.50 82.00
DeepSigns 100 97.00 100 93.50 93.00
Entangled 98.55 92.19 52.47 84.49 87.76

Table 6 summarizes the detection accuracies of evasion
attacks. We balanced the number of key images and regular
images when measuring the detection accuracy so that the
baseline detection accuracy is 50%. These regular images
were taken from the training set so that they would not
overlap with the images used to train the autoencoders.
A high detection accuracy implies that the adversary can
successfully reduce the trigger set recall without losing test
accuracy.

As shown in the table, detection accuracies against the
TinyImageNet models are lower than those against the
other models. Since we train an autoencoder for each class,
the number of training instances to train each autoencoder
becomes extremely limited (e.g., 25 images) when attacking
the TinyImageNet models. Nevertheless, note in the table
that 38 target models out of 55 can successfully evade the
verification process as they reported at least 85% detection
accuracies. This is not surprising as only three out of the
11 previous studies have considered evasion attacks in their
adversarial evaluation. Among the three previous studies
that considered evasion attacks, WMexp is robust against
this attack, as shown in the table. This is because it takes
key images from exactly the same distribution as the regular
images used for training WMexp. However, WMencoder was
vulnerable to evasion attacks in our settings, even though
a previous study [32] demonstrated its robustness against
this attack scenario. That is, the previous study took a naive
approach to conduct evasion attacks so that it failed to
demonstrate a meaningful upper bound on its robustness
against evasion attacks (see Supplemental Material 3 [30]).

7.4 Claiming Ownership by A
The goal of a non-adaptive adversary claiming her owner-
ship is to cause a stalemate in the ownership dispute game
against O. To simulate this adversary, all prior research
has considered a scenario where an adversary conducts
single ownership piracy or ambiguity attacks. However,
there exists an obvious solution to identify the authentic
owner; thus the adversary necessarily loses in this game
(§5.3.1).

TABLE 7: Trigger set recalls of Madv after ownership piracy
attacks. Numbers in parentheses denote the differences of
trigger set recalls between A and O.

A’s Recall (%) O’s Recall (%)

MN GT C10 TI C100 MN GT C10 TI C100

Content 86.00 99.00 100 100 100 49.76 0.05 0.28 1.00 0.20(36.24) (98.96) (99.72) (99.00) (99.80)

Noise 92.00 99.00 100 95.83 100 0.09 24.05 2.80 0.20 22.00(91.91) (74.95) (97.20) (95.63) (78.00)

Unrelated 96.00 98.00 94.00 100.00 99.00 9.28 60.72 50.52 22.40 0.00(86.72) (37.28) (43.48) (77.60) (99.00)

Mark 87.00 99.00 98.00 22.46 100 11.54 5.62 3.06 1.03 0.68(75.46) (93.38) (94.94) (21.44) (99.32)

Abstract 89.00 99.00 98.00 100 100 28.00 32.00 17.00 61.00 0.00(61.00) (67.00) (81.00) (39.00) (100)

Adv 75.00 91.00 98.00 100 100 34.00 12.00 6.00 30.00 7.00(41.00) (79.00) (92.00) (70.00) (93.00)

Passport 94.00 0.00 0.00 4.00 15.00 5.00 6.00 10.00 48.00 1.00(89.00) (-6.00) (-10.00) (-44.00) (14.00)

Encoder 98.00 100 100 100 100 10.00 2.30 11.80 0.50 1.00(88.00) (97.70) (88.20) (99.50) (99.00)

Exp 70.00 98.00 98.00 100 100 0.00 0.00 2.00 0.00 0.00(70.00) (98.00) (96.00) (100) (100)

DeepSigns 93.00 100 99.00 100 100 5.00 2.00 7.00 1.00 0.00(88.00) (98.00) (92.00) (99.00) (100)

Entangled 100 100 99.93 95.31 98.05 100 32.03 12.08 1.34 0.00(0.00) (67.97) (87.86) (93.97) (98.05)

With this in mind, we propose a new attack scenario that
incorporates watermark removal attacks within ownership
claiming attacks. Specifically, we consider a novel scenario
where the adversary first removes O’s watermark and then
implants A’s watermark, thus claiming the ownership of a
new model that only holds A’s watermark. Among the wa-
termark removal attacks, we chose models constructed via
model stealing attacks as a base for ownership piracy and
ambiguity attacks due to model stealing attacks’ outstand-
ing performance in removing watermarks (recall §7.3.2).

Recall that the non-adaptive adversary in these attack
scenarios claims ownership based on her own trigger set.
In other words, the adversary needs to choose one water-
marking algorithm to prepare her trigger set. For this, we
assumed that A prepares her trigger set using WMunrelated.
Hence, WMunrelated becomes the basis of A’s fraudulent
ownership claim of the resulting model Madv .

7.4.1 Ownership Piracy Attack

To perform piracy attacks, the adversary follows the same
procedures and settings as fine-tuning attacks. The only
difference is that A also appends her trigger set to the
dataset of a fine-tuning attacker. With this dataset, A fine-
tunes a watermark-removed model to embed her trigger set.

Table 7 presents the trigger set recalls of A and O after
the attack. We compare these two trigger set recalls because
A in this attack insists that Madv only contains A’s trigger
set and has never been trained on O’s trigger set. That is,
A aims to demonstrate that A’s trigger set recall is high,
whereas O’s trigger set recall is low. We thus show the
differences between the trigger set recall rates of A and O
in parentheses. We shaded (in red) the target models that
showed a difference greater than a threshold varying from
20% to 80%. The gradations illustrate the magnitude of each
trigger recall difference. As we did for all other attacks, we
excluded target models with a test accuracy drop of over
5%.
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TABLE 8: Trigger set recalls of Mwm after ambiguity attacks.
Numbers in parentheses denote the differences of trigger set
recalls between A and O.

A’s Recall (%) O’s Recall (%)

MN GT C10 TI C100 MN GT C10 TI C100

Content 100 98.00 100 100 100 82.94 0.00 2.04 1.00 0.80(17.06) (98.00) (97.96) (99.00) (99.20)

Noise 100 98.00 100 100 100 0.21 59.19 3.60 2.20 45.60(99.79) (38.81) (96.40) (97.80) (54.40)

Unrelated 98.00 100 100 99.00 97.00 99.76 100 95.26 54.60 0.00(-1.76) (0.00) (4.74) (44.40) (97.00)

Mark 100 100 100 100 94.00 11.57 5.10 2.32 0.66 0.90(88.43) (94.90) (97.68) (99.34) (93.10)

Abstract 100 100 100 100 100 41.00 35.00 24.00 65.00 2.00(59.00) (65.00) (76.00) (35.00) (98.00)

Adv 100 100 100 99.00 100 23.00 70.00 8.00 31.00 11.00(77.00) (30.00) (92.00) (68.00) (89.00)

Passport 100 48.00 0.00 0.00 41.00 7.00 34.00 19.00 60.00 2.00(93.00) (14.00) (-19.00) (-60.00) (39.00)

Encoder 100 99.00 100 98.00 100 9.67 2.55 12.60 0.80 1.80(90.33) (96.45) (87.40) (97.20) (98.20)

Exp 48.00 0.00 100 97.00 0.00 1.00 0.00 2.00 0.00 0.00(47.00) (0.00) (98.00) (97.00) (0.00)

DeepSigns 100 100 100 100 98.00 10.00 3.00 6.00 0.00 1.00(90.00) (97.00) (94.00) (100) (97.00)

Entangled 100 99.00 97.00 98.00 99.00 99.93 75.78 52.02 8.04 35.68(0.07) (23.22) (44.98) (89.96) (63.32)

Since we removed O’s watermark before embedding A’s
watermark, A’s trigger set acquired a dominant position
over that of O from 24 target models. Furthermore, from
21 target models, A’s trigger set recall surpassed O’s by at
least 60%. These results imply that A can successfully take
the ownership of those target models, claiming that those
models only contain A’s trigger set. Considering these re-
sults, we suggest future researchers prove their algorithms’
robustness against piracy attacks based on our new scenario.

7.4.2 Ambiguity Attack

Unlike the previous adversary, an adversary performing
ambiguity attacks does not implant A’s trigger set into
the watermark-removed model. Instead, A generates key
images that can trigger the adversary-chosen target la-
bels when given to the watermark-removed model. Conse-
quently, A can claim that the resulting model only remem-
bers A’s trigger set. Specifically, A perturbs seed images by
leveraging gradient descent in order to divert the classifica-
tion of the perturbed images towards the adversary-chosen
target label [17].

Table 8 summarizes the ambiguity attack results. We
applied the same criteria as piracy attacks to color each cell.
Since A does not modify the watermark-removed model,
O’s trigger set recalls after this attack are the same as those
shown in Table 4. Among 55 target models, A’s trigger
set recalls from 23 target models were greater than O’s
by at least 20%. The second and fourth images in Fig-
ure 3 show examples of key images generated by ambigu-
ity attacks targeting the WMnoise-MNIST and WMcontent-
GTSRB models, respectively. We note that the L2 norm of
perturbations added to the seed images is less than 0.004
on average, which implies that the added perturbations are
quasi-imperceptible. We thus conclude that A can success-
fully claim her ownership of those models with the created
trigger set based on WMunrelated. As we demonstrated the

Fig. 3: A’s key images (second and fourth images) generated
from seed images (first and third images) using ambiguity
attacks.

effectiveness of this attack, we argue that future research
should also evaluate its algorithm against ambiguity attacks.

8 LESSONS

We have so far conducted six different attacks along with
three adaptive attacks to evaluate the robustness of the 11
watermarking algorithms. Table 9 shows the number of
attacks that succeeded in each target model watermarked
using the given algorithm. When tallying up the totals, we
only included results that reported a test accuracy drop of at
most 5%. We set a trigger set recall of 80% as the minimum
threshold for claiming ownership after conducting fine-
tuning, model stealing, and parameter pruning attacks. For
evasion attacks, we considered 85% as the minimal detection
accuracy necessary to evade the verification step.

Note in the table that every watermarking algorithm is
broken by at least two presented adaptive attacks and two
non-adaptive attacks. When considering both adaptive and
non-adaptive attacks, all schemes do not demonstrate their
robustness against at least five attacks. Furthermore, six out
of the 11 watermarking algorithms [2], [16], [24], [32], [42],
[59] were vulnerable to attacks against that the authors had
already evaluated. While all the evaluated watermarking
algorithms were broken, WMunrelated was the most robust
algorithm among them.

These results highlight that all the existing trigger set-
based watermarking algorithms are not ready for real-world
deployment. We believe that the demonstrated failure to
establish watermark robustness stems from current research
practice regarding how adversarial evaluation is conducted.
We further discuss several factors that make robust wa-
termarks (§8.1) and suggestions for adversarial evaluation
(§8.2).

8.1 Robustness of Watermarking Algorithms
We analyze what makes a particular watermarking algo-
rithm more resilient to adversarial attacks than the others.
Distances between key images and decision boundaries.
Note that watermark removal attacks aim to slightly distort
the decision boundaries so that the resulting model predicts
the key images as a label other than the target label. In
other words, when the key images are distant from the
decision boundaries, the target model becomes resilient to
watermark removal attacks. We thus measured the dis-
tances between key images and the decision boundaries.
Specifically, we conducted the PGD attacks [34] against the
target model and utilized the perturbation size required to
modify the prediction of key images as a distance metric. We
selected two most robust (i.e., WMnoise and WMunrelated)
and two most vulnerable (i.e., DeepSigns and WMmark)
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TABLE 9: Summary of the attack results. ✓ denotes that the attack succeeded against a target model watermarked with the
corresponding algorithm, whereas ✗ indicates that the attack failed. For each watermarking scheme, the successful attacks
are presented in the order of MNIST, GTSRB, CIFAR-10, TinyImageNet, and CIFAR-100 models.
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Fine-tuning
(non-adap.) ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Fine-tuning
(adap.) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Stealing
(non-adap.) ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Stealing
(adap.) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Pruning
(non-adap.) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Pruning
(adap.) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Evasion ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Ownership
Piracy ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ambiguity ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

# of
Succeeded
Attacks

6 7 6 2 1 7 7 5 3 1 5 2 2 2 1 8 7 7 2 2 9 6 5 0 0 7 7 7 3 2 8 5 1 0 0 7 7 6 2 1 6 6 5 0 0 8 7 7 3 3 1 6 4 2 3

Maximum
# per
Scheme

7 7 5 8 9 7 8 7 6 8 6

watermarking schemes against fine-tuning attacks for this
evaluation. When measured over the CIFAR-10 models, we
observed that the distances of WMnoise and WMunrelated

are greater than those of DeepSigns and WMmark.
Effect of target labels. As shown in Table 9, WMnoise and
WMunrelated are more robust than the other algorithms
against non-adaptive fine-tuning attacks. Note that the key
difference between these two schemes and the others is that
they allocate a single class to all key images, whereas the
remaining schemes assign different labels to each key image.
That is, the consistent labeling of these two schemes helps
Mwm generalize on O’s trigger set, thus making it difficult
for A to remove O’s watermark.
Effect of key images. We observed that WMexp is the
only robust algorithm against evasion attacks. Note that
WMexp employs images selected from the same distribution
as normal training instances for key images, while the other
watermarking algorithms use out-of-distribution images.

Considering these factors that affect watermark robust-
ness, we propose the following recommendations for im-
proving watermark robustness. First, it is better to assign
a single target label to all key images rather than random
labels. Second, it is better to select key images from the
same distribution as a regular training set rather than from
a different distribution.

8.2 Suggestions for Adversarial Evaluation
From our evaluations, we draw the following takeaways
that future research on designing a secure watermarking
algorithm should consider. We encourage researchers to

evaluate their defenses following our suggestions discussed
herein, thus demonstrating a meaningful upper bound on
their robustness.
Apply the complete attack set. We found out that all the
previous works were broken by already existing attacks.
They could have known this result if they have conducted
a complete set of existing state-of-the-art attacks to evaluate
their algorithms. In this regard, we suggest future research
conduct at least a complete set of state-of-the-art attacks at
the time of suggesting a new approach.

Recently, several watermark removal attacks [12], [31],
[44], [54] that have better performance compared to the
attacks examined herein have been recently proposed. For
instance, Chen et al. [12] adopted the elastic weight con-
solidation algorithm to further improve the fine-tuning at-
tacks. We thus recommend researchers to consider these
state-of-the-art attacks when evaluating their watermarking
schemes.
Use adaptive attacks. All the state-of-the-art watermarking
algorithms were vulnerable to the proposed adaptive at-
tacks. We believe that our adaptive attacks serve as a better
baseline for demonstrating the robustness of a target water-
marking scheme. We recommend future research consider
the proposed adaptive attacks when conducting fine-tuning,
model stealing, and pruning attacks.
Focus on attacks that obscure O’s ownership. Recall from
§5.3.1 that an attack scenario in which the adversary con-
ducts a single attack that claims her ownership is futile.
Therefore, when evaluating attacks that aim to claim A’s
ownership, one should first launch attacks that remove
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O’s watermark and then initiate the attacks to claim A’s
ownership.
Search for effective attack hyperparameters. Surprisingly,
five out of the 11 evaluated watermarking algorithms were
broken by attacks that the previous studies already evalu-
ated (recall §7.3.1 and §7.3.4). To avoid providing a mislead-
ing upper bound on robustness, follow-on research must
conduct strong attacks by carefully exploring hyperparam-
eters and adopting state-of-the-art attacks.
Consider diverse datasets. Overall, the models trained on
the MNIST dataset tend to be vulnerable, as shown in
Table 9. Interestingly, the watermarked models trained on
CIFAR-100 and TinyImageNet were robust against the pre-
sented attacks in general. This is because the conducted at-
tacks have always contributed to decreasing a test accuracy
over 5% (see Supplemental Material 5 [30]), which means
that the presented attacks on the CIFAR-100 and TinyIma-
geNet models easily undermine the models’ performance.
In other words, we observed that test accuracies are prone
to drop significantly after watermark removal attacks when
the number of classes in a dataset increases. Note that it is
well-known that various DNN defense algorithms showed
different levels of robustness depending on the dataset [6].
We thus suggest considering more datasets than the MNIST
and CIFAR datasets when evaluating watermarking algo-
rithms.

9 RELATED WORK

Backdoor attacks. There have been several studies on back-
door attacks against DNN models [11], [20]. In this type of
attack, a user sends a training set to the adversarial trainer
to outsource the training process. The adversary then trains
a model with the received normal data as well as images
containing a backdoor trigger, e.g., a sticker with a flower.
The goal of the adversary here is to lead the model to
misclassify when the backdoor-triggering input is provided.

To mitigate backdoor attacks, researchers have proposed
several mitigation methodologies [9], [33], [54]. DeepIn-
spect [9] reverse-engineers the backdoor trigger using a
conditional generative model and then fine-tunes the tar-
get model by harnessing the generated backdoor-triggering
images and their correct labels. Wang et al. [54] suggested
another method that remedies the target model by remov-
ing neurons that contribute to misclassifying backdoor-
triggering images.

Note that these defenses are similar to our adaptive
fine-tuning attacks and adaptive pruning attacks per se.
However, their approaches are not directly applicable to
reverse-engineering key images of various trigger set-based
DNN watermarking algorithms because they only focus on
backdoor-triggering inputs created by adding a backdoor
trigger to the source images. On the other hand, we demon-
strated how an adaptive adversary generates key images
against diverse watermarking schemes.
Adversarial example attacks. DNN models are known to
misclassify adversarial examples created by adding quasi-
imperceptible perturbations to normal examples [18], [48].
Since this finding, there has been a vast volume of research
on adversarial examples. To mitigate this threat, Paper-
not et al. [40] proposed defensive distillation to smooth

the network gradients exploited for generating adversarial
samples. On the other hand, MagNet [35] detects such
examples at the testing phase; it detects and reforms ad-
versarial examples by leveraging autoencoders trained on
regular images. However, these defenses were later broken
by other strong attacks [6], [7], [8]. Adversarial training [45],
which improves the robustness of DNN models by training
adversarial examples with correct labels, is the current state-
of-the-art defense against adversarial example attacks [34].
In our study, we selected WMadv that utilizes adversarial
examples as our target watermarking scheme and employed
the approach of MagNet [35] for evasion attacks.
Model stealing attacks. The goal of model stealing attacks,
also known as model extraction attacks, is to copy the clas-
sification performance of remote target models [51]. Paper-
not et al. [39] trained a counterfeit model as a stepping stone
for creating adversarial examples of remote target models.
Orekondy et al. [38] demonstrated that model stealing is
still possible against complex DNN models even though
the adversary does not have enough training sets and does
not know the model structure. They showed that arbitrary
images downloaded from the Internet and arbitrary models
are enough to forge the target model. PRADA [26] detects
model stealing attempts by analyzing incoming queries.
However, this defense is inapplicable to DNN watermark-
ing algorithms. Note that the adversary does not have to
send remote queries because the target model is already
in the hands of the adversary. We leveraged this attack
for removing O’s watermark in the target model. In our
settings, we prepared the training set for model stealing
attacks in §7.3.2 following the approach of [38].

10 CONCLUSION

We investigate the current practice of demonstrating wa-
termark robustness via adversarial evaluation in the pre-
vious studies. We point out two common flaws in their
evaluations: (1) incomplete adversarial evaluation and (2)
overlooked adaptive attacks. Taking into account these
shortcomings, we evaluate the 10 trigger set-based water-
marking schemes and demonstrate that every proposed
watermarking scheme is vulnerable to at least five presented
attacks, which significantly undermines their intended goal
of proving ownership. We conclude these failures stem from
today’s flawed practice in conducting adversarial evalua-
tion. We encourage future studies on new watermarking
algorithms to consider our guidelines presented herein
to demonstrate a meaningful upper bound of robustness
against the complete set of the existing attacks, including
the proposed adaptive attacks.
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