
1

Evaluating the Robustness of Trigger Set-Based
Watermarks Embedded in Deep Neural

Networks (Supplemental Materials)
Suyoung Lee, Wonho Song, Suman Jana, Meeyoung Cha, and Sooel Son, Member, IEEE

✦

1 TARGET WATERMARK SCHEMES

We describe 11 of the selected representative watermarking
algorithms that leverage a trigger set. For ease of explana-
tion, we leverage Algorithm 1 (§2.2) to explain key proce-
dures that differ in each watermarking scheme.

1.1 Embedding Meaningful Content (WMcontent) or
Noise (WMnoise) into Images
Zhang et al. [15] proposed a watermarking algorithm for
a target model to learn the relationships between a target
label and key images embedding meaningful content or
noises. Specifically, in their watermarking algorithm, the
EmbedWatermark function takes source images of a given
class from a training set. Then, the GenerateKeyImgs function
superimposes either extra meaningful content, such as a
textual image with the word (e.g., “TEST”), or a Gaussian
noise onto source images. The AssignKeyLabels function
selects one class other than the given source class and
assigns this class to all the superimposed key images. This
new class is called a target label. At last, the TrainModel
function trains a model with both the trigger and original
training sets from scratch.

1.2 Using an Unrelated Class of Images (WMunrelated)
Zhang et al. [15] also proposed another watermarking al-
gorithm that leverages images unrelated to the original
purpose of a target DNN model. In this scheme, a model
owner O chooses a target label and then trains source
images of which class is unrelated to this target label. For
instance, assume that O builds a food DNN classifier; she
picks a “hamburger” target label and trains airplane images
with this target label, thus rendering the airplane images
as the watermark key images. Note that, in this scheme, O
takes key images from a distinct distribution rather than
synthesizing new images from the original training set.

1.3 Embedding a Message Mark into Images (WMmark)
Guo et al. [4] designed the GenerateKeyImgs function to syn-
thesize key images by adding noise. The proposed method
is not quite different from embedding a Gaussian noise
(Supplemental Material 1.1), but this approach differs in that
the noise and target labels are devised to incorporate the

signature of a model owner. The TrainModel function trains
a model with a regular training set and then fine-tunes the
model using both the regular set and trigger set to embed
watermarks.

1.4 Using a Set of Abstract Images (WMabstract)

Adi et al. [1] suggested an approach that uses abstract im-
ages as key images without relying on the GenerateKeyImgs
function. The AssignKeyLabels function then randomly al-
locates a class to each abstract image. To train a model, the
TrainModel function uses both the regular training set and
trigger set. Their approach is similar to the aforementioned
approach using an unrelated class of images (Supplemental
Material 1.2) because it leverages images taken from a
distribution distinct from that of the original training set.
However, the key difference is that they devised a secure
verification procedure.

When deploying a model, O provides a public verification
key, the encrypted version of a trigger set. The verification
procedure involves a trusted third party. This trusted ver-
ifier asks O or an adversary to submit an encryption key
and the trigger set, together called a private marking key. The
verifier first checks whether the public key can be decrypted
with the submitted encryption key. If so, the verifier then
checks whether the decrypted key images trigger their cor-
responding target labels.

1.5 Watermarking via Adversarial Training (WMadv)

Merrer et al. [8] utilized adversarial examples as key images.
The GenerateKeyImgs function runs FGSM [3] on a pre-
trained model to create adversarial examples that yield
misclassification of the model. Then, AssignKeyLabels la-
bels each created example with a ground-truth class, and
TrainModel fine-tunes the pre-trained model with these
pairs in addition to the regular training data.

This approach is analogous to adversarial training [3],
[12] in that a model watermarked with WMadv becomes ro-
bust against such adversarial examples. On the other hand,
unwatermarked models are still vulnerable to these exam-
ples, due to the transferability of adversarial examples [3].
The original owner of a model can verify her ownership by
leveraging this difference.

2

1.6 Embedding Passports into DNNs (WMpassport)

Fan et al. [2] proposed a novel model structure to hinder
ambiguity attacks that aim to extract key images. They
focused on building a secure model architecture instead of
devising secure key images. In TrainModel, they proposed to
replace convolutional layers in a model with security layers,
called passport layers. Other functions work in the same way
as the approach by Adi et al. [1].

A passport layer takes in as inputs a user-provided
passport and an output from the previous layer. Note that
this passport layer is designed to output meaningful values
only when a valid passport, which was provided in a
training phase, is given. Therefore, the valid passports need
to be kept secret for end-users, and a model owner O may
want to deploy her model without passport layers. To this
end, O trains her model such that it can perform inference
regardless of the presence of passport layers by means of
multi-task learning. After training, O can host her service
using the model without passport layers.

Once the owner finds a suspicious model, she can query
that model with key images. If the model returns predefined
labels, the owner can ask for white-box access to that model
with help of law enforcement and check whether the key
images still trigger the predefined labels even when the
passport layers are added back to the model.

1.7 Synthesizing Watermark Images with an Encoder
(WMencoder)

Li et al. [6] focused on generating key images that have
a distribution similar to that of the original training set.
Given source images, the GenerateKeyImgs function uses
encoder and discriminator networks to reconstruct source
images, and the reconstructed images become key images,
thus making these key images have a similar distribution to
their original ones. For each key image, the AssignKeyLabels
function then randomly allocates a class to each abstract
image. The remaining functions work the same as those
proposed by Adi et al. [1].

The proposed scheme is designed to prevent evasion
attacks. An evasion attack is an attempt for an adversary
to discard any inquiry with genuine key images, which
prevents a legitimate model owner from proving the own-
ership. Generating key images similar to their original ones
makes it difficult for the adversary to distinguish key im-
ages.

1.8 Training with Exponential Weighting (WMexp)

Namba et al. [9] designed a watermarking algorithm that
mitigates parameter pruning and evasion attacks. In their
algorithm, the GenerateKeyImgs function takes key images
from a regular training set. Since these images share the
same distribution as normal images, an adversary is highly
likely to fail at distinguishing them.

After AssignKeyLabels assigns a label other than
the ground-truth label to each selected key image, the
TrainModel function fine-tunes a pre-trained model with
exponential weighting. The intuition behind this approach
is that we can exponentially increase weight parameters that
contribute to the model’s prediction, thus hardening the

(a) Original key image. (b) Reverse-engineered image.

Fig. 2: Examples of O’s key image and reverse-engineered
key image (WMcontent).

embedded watermarks against pruning attacks that aim to
remove small weights.

1.9 Implanting a Random Trigger Set (DeepSigns)

DeepSigns [11] randomly creates key images and their target
labels. Specifically, it generates a random trigger set such
that a pre-trained model fails to predict the target labels but
becomes able to correctly predict after fine-tuning. Thus, the
owner can send a query with the created key images for
verifying her ownership.

2 ADAPTIVE ATTACKS

We demonstrate how an adversary adaptively creates a
trigger set against a given watermarking scheme, which
aims at unlearning O’s original trigger set. Specifically, we
explain loss functions and source images that we leveraged
to train autoencoders. For the autoencoder architectures, we
adopted a ResNet18-based U-Net model for WMpassport

and a regular U-Net model [10] for the other schemes.
Remind that we conducted fine-tuning, model stealing,

and parameter pruning adaptive attacks against the 11 wa-
termark schemes (§7.3.1–§7.3.3). For this, we have devised
33 different adaptive attacks (3 attacks × 11 schemes).
Instead of explaining each adaptive attack, we categorize
the target watermarking schemes into two groups according
to the internal working of GenerateKeyImgs and then explain
the generation of key images using the autoencoder for each
group.

Among our 11 target watermarking algorithms,
WMcontent, WMnoise, and WMmark create key images by
superimposing content, noise, or mark onto source images,
respectively. On the other hand, the remaining seven wa-
termarking schemes take key images from the same or
dissimilar distributions.

2.1 Superimposing One Image onto Another

Embedding content (WMcontent). We first define a key
image x′ that includes a content image C on top of a source
image x as follows:

x′ = (1−M) · x+M · C (2)

Here, M represents a mask that determines how much C
overlaps with x, similar to the approach of Wang et al. [14].

To model the GenerateKeyImgs function of WMcontent,
we employ two autoencoders, each of which is specially

3

designed to generate C and M, respectively. Note that x′ in
WMcontent contains concise content, as shown in Figure 2a.
In other words, M should be sufficiently small enough to
overlay only a small portion of x.

Incorporating all these together, we trained two autoen-
coders with the random content C and the random mask M
such that (1) the generated content C′ does not significantly
differ from C and (2) the created mask M′ remains suffi-
ciently small. Specifically, we designed the following loss
function as Lae in Equation 1.

Lae = MSE(C, C′) + γ · |M′| (3)

In Equation 3, the first term computes mean squared errors
between C and C′, and the second term refers to the L1 norm
of M′.

Once each autoencoder outputs C′ and M′, they are
combined with source images x as in Equation 2, thus
becoming the reverse-engineered key images x′. Then, these
reverse-engineered images are provided to Mwm for com-
puting the classification error loss term in Equation 1. As the
source images, we used 50% of a test set. Figure 2b shows
a reverse-engineered image x′ after training. Note that the
content of this image resembles that of Figure 2a.
Embedding noise or mark (WMnoise or WMmark). A key
image x′ is defined as the following where Z indicates noise
or mark embedded in a source image x.

x′ = x+ Z (4)

To model how WMnoise and WMmark generate these key
images, we organized an autoencoder to create Z , which is
added to the source image x.

Note that the training objective of this autoencoder is
to modify Z so that the output noise Z ′ can cause the
misclassification of Mwm when added to x. At the same
time, A aims to make Z ′ remain close to the noise or mark
generated with the given watermarking algorithm. To this
end, we harnessed the mean squared error between Z and
Z ′ as Lae and trained the autoencoder with random noise
Z created by following the given watermarking algorithm.
We used 50% of a test set as the source images for training
the autoencoder, as we did for WMcontent.

2.2 Collecting Images from the Distribution

Images from the same or similar distribution (WMexp or
WMencoder). Recall that WMexp takes a small subset of a
training set and uses it as key images; WMencoder aims
to create key images that are close to the images used for
training Mwm. In other words, both watermarking schemes
seek to design key images that are indistinguishable from
the images used for training. Therefore, we directly trained
the autoencoder to output key images x′ such that x′ is close
to the source images x, which is 50% of a test set. Specifically,
we trained the autoencoder in the direction of minimizing
the mean squared error between x and x′.

To further improve the autoencoder’s ability to place x′

close to x, we also trained a discriminator network D that
outputs whether the given image is a real image. Following
the general GAN approach [13], we alternated training
between the autoencoder and discriminator so that the
autoencoder can gradually improve the output images x′

TABLE 10: Performance of Madv after fine-tuning attacks
with various settings.

Optim. Dataset Lr
Trigger Recall (%) ∆Test Acc. (%)

C10 C100 C10 C100

SGD Train 0.0005 100 100 0.10 0.24
Adam Train 0.0005 75.00 66.00 -3.40 -7.30

Adam
Test ∪

0.0005 60.00 26.00 -4.16 -8.20
Random

Adam
Test ∪

0.001 26.00 6.00 -8.20 -11.54
Random

enough to fool the discriminator as training proceeds. When
training the autoencoder, we used the following objective
function as Lae in Equation 1.

Lae = MSE(x, x′) + γ · Ldis(x
′, 0) (5)

Here, the first term corresponds to the mean squared error
function, and the second term is the classification error
of the discriminator network. Note that the discriminator
network is trained to output 1 for real images and 0 for
synthesized images. Therefore, the second term is designed
to create x′ that is able to fool the discriminator network.
Adversarial examples (WMadv). Since WMadv crafts adver-
sarial examples to use as key images, the adaptive adversary
can simply simulate the GenerateKeyImgs function without
the autoencoder. That is, the adversary can create adversar-
ial examples without training the autoencoder. We used 50%
of a test set for creating adversarial examples x′.
Images from the dissimilar distribution. The remaining
five watermarking schemes collect or generate the out-of-
distribution images as key images. We thus prepared ran-
dom source images following each watermarking scheme
and trained the autoencoder to reduce the mean squared
errors between the source and synthesized images.

We prepared the following source images for each wa-
termarking algorithm. We prepared random abstract im-
ages for training the autoencoder against WMabstract and
WMpassport. For WMentangled, we prepared arbitrary im-
ages drawn from a single distribution. When training the
autoencoder against DeepSigns, we provided randomly cre-
ated images to the autoencoder. Lastly, for WMunrelated, we
collected arbitrary images that belong to a single unrelated
class.

3 EXPERIMENTAL RESULTS DIFFERENT TO PRE-
VIOUS STUDIES

We demonstrated that WMnoise, WMabstract, WMpassport,
WMencoder , and DeepSigns do not withstand fine-tuning
and evasion attacks (§7.3.1 and §7.3.4), even though previ-
ous studies already demonstrated their robustness against
those attacks. In this section, we present that these different
experimental results stem from (1) different attack settings
that the adversary is able to arrange and (2) a weak attack
that does not represent a meaningful upper bound on wa-
termark robustness.
Fine-tuning attack. When conducting fine-tuning attacks,
there exist three factors that affect attack results: opti-
mizer, dataset, and learning rate. To investigate the effect of

4

these factors, we conducted fine-tuning attacks with various
settings against Mwm watermarked with WMabstract. We
chose WMabstract because the previous study [1] provided
detailed descriptions of how they conducted fine-tuning
attacks. We only considered Mwm trained with CIFAR-10
and CIFAR-100 because the previous study did not evaluate
Mwm trained with MNIST and GTSRB.

Table 10 summarizes the experimental results. The pre-
vious study conducted fine-tuning attacks with the settings
in the first row. They fine-tuned Mwm with a stochastic
gradient descent optimizer, the entire training set, and the
last learning rate used for training Mwm. With this setting,
the trigger set recalls did not drop at all, which accord with
the previous study. However, as shown in the second row,
when we optimize Mwm with Adam [5] during fine-tuning,
the trigger set recalls decreased at least 25%. We confirmed
that this also happens with the code released by the original
paper.

As the third row represents, we further replaced the
dataset for fine-tuning Mwm with 50% of a test set as well
as randomly sampled unlabeled images. This is the same
setting that we used in §7.3.1. The trigger set recalls dropped
significantly in this setting. When conducting fine-tuning
attacks in this setting against WMabstract with CIFAR-10,
the adversary dropped the trigger set recall to be 60% with
a slight drop of within 5% in test accuracy.

Note that the previous study assumes that the strong
A has access to the entire training set. They used this
training set to make a target model forget its trigger set
via conducting fine-tuning attacks. However, we believe
that conducting the attacks with training instances that are
disjointed from the original training set is more effective
to achieve the adversary’s goal of decreasing a trigger set
recall. The experimental result in the third row accords with
this assumption.

Finally, we evaluated whether increasing a learning rate
affects the attack results. As shown in the last row, the
trigger set recalls even further dropped under 30% at the
cost of test accuracy drops.

We emphasize that the choice of an optimizer and a
learning rate for fine-tuning attacks is completely up to the
adversary. Therefore, the fine-tuning attacks conducted by
the previous study were rather weak to demonstrate the
robustness of their watermarks.

Evasion attack. There exist many approaches to detect
images from a distribution other than the given one. That
is, one can build a detector to distinguish key images from
normal ones with various approaches. To build such a detec-
tor, WMexp took a relatively weak approach; they devised a
simple network by leveraging the former layers of ResNet-
18 as a feature extractor and a fully connected layer as the
output layer for binary classification. We note that they did
not consider a sufficiently strong detection approach, such
as MagNet [7], which was a state-of-the-art approach when
the first watermarking scheme was suggested.

From these observations, we conclude that the previous
studies have implemented relatively weak attacks, thus
failing to demonstrate a meaningful upper bound on their
robustness.

TABLE 11: Performance of Madv watermarked with Deep-
Signs assuming adversaries who have access to the different
amount of a test set: (1) Trigger set recall (%) after fine-
tuning and model stealing attacks, (2) Trigger set detection
accuracy (%) after evasion attacks, and (3) Trigger set recall
difference (%) between A and O after piracy and ambiguity
attacks.

10% 50%

MN GT C10 C100 MN GT C10 C100

Fine-tuning (non-adap.) 12.00 2.00 10.00 5.00 11.00 1.00 8.00 0.00
Fine-tuning (adap.) 9.00 4.00 11.00 2.00 11.00 1.00 12.00 2.00
Stealing (non-adap.) 10.00 0.00 11.00 1.00 10.00 3.00 6.00 1.00
Stealing (adap.) 14.00 4.00 11.00 0.00 6.00 2.00 11.00 0.00
Evasion 97.50 90.50 96.50 58.50 100 97.00 100 93.00
Piracy 84.00 98.00 77.00 99.00 88.00 98.00 92.00 100
Ambiguity 90.00 100 89.00 99.00 90.00 97.00 94.00 97.00

4 ADVERSARY WITH FEWER DATA

Recall from §3.2 that we assumed an adversary who has
access to 50% of a test set. We now relax this assumption
and demonstrate whether an adversary with fewer data (i.e.,
10% of a test set) can still successfully infringe on the IP of
O. Specifically, assuming this weaker adversary, we evaluate
whether the performance of each attack degrades.

It is obvious that a watermarking algorithm that was
robust under the original assumption would be still robust
against the weaker attacks conducted by this adversary.
Therefore, we evaluate whether DeepSigns, one of the most
vulnerable schemes, is able to withstand our attacks when
we consider an adversary with fewer data (recall Table 9).

Table 11 summarizes the attack results. The left and right
halves of the table illustrate the results from an adversary
with 10% and 50% of a test set, respectively. We did not
include non-adaptive and adaptive pruning attacks in the
table because they do not use the test set for the attacks.
Overall, the attack performance was not significantly af-
fected by the amount of data to which the adversary has
access. Each Mwm that was broken by the original adver-
sary’s attacks was again destroyed by the weaker adversary.
However, note in the table that the CIFAR-100 model was
robust to the evasion attacks. Recall from §7.3.4 that we train
the autoencoders for each class. Therefore, the attack failed
as we did not have enough training instances for each of the
100 autoencoders.

5 EXPANDED TABLES

Tables 13–15 show the expanded versions of Tables 3–5,
and Tables 16–17 correspond to Tables 7–8, respectively. In
addition to the trigger sell recalls shown in the original
tables, we included the magnitude of test accuracy drops
in the expanded versions. Recall that we used 50% of a test
set when mounting fine-tuning and model stealing attacks.
Therefore, for these attacks, we computed the test accuracies
with the remaining 50% of a test set that is disjoint from the
set used for the attacks.

6 EFFECT OF AUXILIARY SETS

Recall that we use an auxiliary set for conducting various
watermark removal attacks (§7.3–§7.4). We thus show how

5

TABLE 12: Trigger set recall (%) of Madv after fine-tuning
attacks using different auxiliary sets.

Auxiliary Set

CIFAR-100 TinyImageNet

WMcontent 24.54 10.24
WMmark 3.86 46.07
WMabstract 60.00 57.00
WMadv 24.00 30.00
WMencoder 20.00 34.00
WMexp 1.00 1.00
DeepSigns 8.00 7.00
WMentangled 4.57 10.82

the auxiliary set affects the performance of these attacks.
Specifically, we selected eight CIFAR-10 models in Table 3
that were vulnerable to fine-tuning attacks when using
CIFAR-100 as an auxiliary set. We then conducted the
same attack using TinyImageNet as an auxiliary set instead
of CIFAR-100. Table 12 summarizes the attack results. As
shown in the table, the eight CIFAR-10 models were against
all broken even though we used the different auxiliary set.

6

TABLE 13: Performance of Madv after fine-tuning attacks.

Non-adaptive Attack Adaptive Attack

Trigger Set Recall (%) ∆Test Acc. (%) Trigger Set Recall (%) ∆Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100

WMcontent 57.02 0.36 24.54 0.00 13.20 -0.88 1.22 -3.94 -4.54 -6.14 39.74 53.96 26.92 0.00 75.20 -1.40 2.83 -4.64 -4.12 -9.70
WMnoise 5.93 84.46 99.14 0.40 93.80 -0.30 2.38 -4.38 -4.90 -9.48 0.36 5.63 3.78 0.40 10.20 -1.46 -0.43 -4.42 -4.38 -9.58
WMunrelated 99.34 100 99.10 99.40 92.80 -1.32 2.45 -4.60 -3.66 -7.74 32.76 99.77 17.26 15.80 0.00 -2.10 3.31 -4.36 -4.84 -7.42
WMmark 40.28 8.95 3.86 5.64 2.29 -1.12 -0.29 -3.76 -4.54 -4.94 19.77 25.87 8.02 1.25 1.46 -2.72 1.03 -4.60 -4.72 -8.20
WMabstract 51.00 51.00 60.00 100 26.00 -0.86 1.65 -4.16 -3.72 -8.20 45.00 83.00 54.00 100 23.00 -0.96 3.61 -3.96 -5.38 -9.40
WMadv 35.00 79.00 24.00 66.00 13.00 -1.38 0.70 -3.10 -4.12 -5.82 14.00 8.00 12.00 6.00 2.00 -1.40 1.98 -2.20 -3.38 -4.94
WMpassport 14.00 43.00 14.00 74.00 3.00 -1.04 2.95 -7.22 -9.32 -10.06 13.00 43.00 17.00 75.00 3.00 -0.56 3.63 -6.52 -14.82 -9.90
WMencoder 20.00 4.08 20.00 7.00 8.00 -0.62 3.06 -4.04 -4.78 -8.14 17.00 7.14 20.60 1.60 5.60 -1.32 4.69 -4.04 -3.76 -8.30
WMexp 6.00 0.00 1.00 5.00 1.00 -0.36 2.25 -4.12 -55.74 -5.94 7.00 0.00 2.00 9.00 0.00 -0.46 4.42 -2.88 -57.58 -6.74
DeepSigns 11.00 1.00 8.00 1.00 0.00 -1.46 1.08 -4.64 -4.20 -4.98 11.00 1.00 12.00 0.00 2.00 -1.16 2.36 -2.88 -3.92 -3.52
WMentangled 99.81 27.34 4.57 2.68 40.89 -5.42 2.28 -1.74 -4.84 -4.94 97.42 33.59 1.48 4.69 23.18 -13.66 2.52 -3.10 -4.46 -6.96

TABLE 14: Performance of Madv after model stealing attacks.

Non-adaptive Attack Adaptive Attack

Trigger Set Recall (%) ∆Test Acc. (%) Trigger Set Recall (%) ∆Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100

WMcontent 82.94 0.00 2.04 1.00 0.80 -0.52 -1.68 -3.76 -19.34 -10.64 28.37 0.05 1.18 1.80 0.40 -0.92 4.48 -3.54 -21.70 -11.06
WMnoise 0.21 59.19 3.60 2.20 45.60 -0.44 -2.15 -4.02 -22.34 -11.62 0.09 6.76 4.04 0.20 87.60 -1.34 4.02 -4.36 -22.80 -12.64
WMunrelated 99.76 100 95.26 54.60 0.00 -1.08 -0.51 -4.10 -22.80 -11.08 34.94 100 9.02 20.20 0.00 -0.88 4.83 -4.50 -22.26 -12.56
WMmark 11.57 5.10 2.32 0.66 0.90 -0.82 1.06 -2.18 -23.24 -6.54 7.66 7.27 6.81 0.81 1.46 -1.26 1.74 -2.76 -23.58 -8.00
WMabstract 41.00 35.00 24.00 65.00 2.00 -1.02 2.26 -3.90 -21.18 -11.62 39.00 48.00 27.00 66.00 2.00 -0.72 4.40 -3.40 -22.40 -12.76
WMadv 23.00 70.00 8.00 31.00 11.00 -0.84 -1.33 -2.90 -21.88 -8.36 17.00 0.00 16.00 17.00 1.00 -1.52 1.90 -3.26 -20.94 -9.30
WMpassport 7.00 34.00 19.00 60.00 2.00 -0.36 5.24 -11.12 -33.12 -17.62 7.00 37.00 16.00 57.00 1.00 -0.52 5.29 -9.66 -34.14 -18.94
WMencoder 9.67 2.55 12.60 0.80 1.80 -1.28 -1.08 -3.82 -20.22 -11.76 9.33 2.30 13.20 1.00 1.40 -1.88 6.19 -4.60 -21.40 -12.16
WMexp 1.00 0.00 2.00 0.00 0.00 -1.34 2.34 -3.56 -21.16 -9.40 4.00 0.00 2.00 0.00 2.00 -1.80 5.04 -3.92 -21.72 -10.62
DeepSigns 10.00 3.00 6.00 0.00 1.00 -1.28 0.67 -2.68 -19.62 -8.40 6.00 2.00 11.00 0.00 0.00 -1.52 3.31 -2.60 -22.90 -8.84
WMentangled 99.93 75.78 52.02 8.04 35.68 -13.58 3.14 -5.38 -30.46 -15.52 96.20 25.00 37.62 6.70 21.35 -19.02 3.29 -6.10 -31.58 -16.42

TABLE 15: Performance of Madv after parameter pruning attacks.

Non-adaptive Attack Adaptive Attack

Trigger Set Recall (%) ∆Test Acc. (%) Trigger Set Recall (%) ∆Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100

WMcontent 99.87 100 100 99.80 100 -0.12 0.06 0.00 -21.31 0.03 64.95 100 100 0.00 100 -0.29 -7.65 0.00 -62.36 -6.41
WMnoise 100 100 100 99.00 100 -0.01 0.01 0.00 -20.39 0.00 97.29 0.27 100 0.00 58.20 -0.77 -1.00 0.00 -58.33 -6.15
WMunrelated 99.38 100 100 70.20 100 -0.89 0.02 0.02 -16.64 0.00 17.22 0.81 90.98 100 4.00 -0.33 -6.03 -2.94 -55.33 -6.55
WMmark 97.40 99.64 99.64 41.65 94.63 -0.96 -0.16 0.00 -58.76 -0.20 69.03 97.03 96.97 51.80 69.96 -1.21 -8.37 -4.27 -41.29 -25.07
WMabstract 73.00 100 100 74.00 100 -0.89 0.09 0.00 -22.80 0.00 78.00 95.00 97.00 3.00 98.00 -0.30 -6.59 -2.38 -59.01 -7.81
WMadv 91.00 100 100 41.00 100 -0.47 -0.46 0.00 -23.97 -0.21 96.00 7.00 97.00 12.00 94.00 -0.34 -5.96 -3.66 -53.84 -5.61
WMpassport 80.00 100 71.00 99.00 87.00 -0.53 0.20 -1.59 -4.90 -1.49 84.00 94.00 82.00 94.00 91.00 0.00 -2.92 0.00 -5.77 -2.73
WMencoder 96.50 96.94 99.20 80.80 98.60 -1.25 -0.02 0.00 -14.33 -0.82 99.00 91.07 98.20 0.30 92.80 -0.57 -4.11 -2.38 -59.26 -5.69
WMexp 92.00 100 100 4.00 100 -0.53 0.17 0.00 -74.71 0.08 92.00 99.00 98.00 0.00 97.00 -2.14 -8.74 -1.81 -71.40 -5.89
DeepSigns 39.00 89.00 100 2.00 98.00 -0.65 -1.99 0.00 -39.45 -0.62 81.00 98.00 99.00 12.00 78.00 -0.45 -4.15 -2.84 -59.51 -6.24
WMentangled 100 83.59 17.81 70.09 61.98 -3.79 -0.07 -0.85 -0.35 -2.80 99.95 71.88 5.33 2.68 57.81 -0.21 -4.86 -3.04 -24.57 -6.84

7

TABLE 16: Trigger set recalls of Madv after ownership piracy attacks. Numbers in parentheses denote the differences of
trigger set recalls between A and O.

A’s Trigger Set Recall (%) O’s Trigger Set Recall (%) ∆Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100

WMcontent
86.00 99.00 100 100 100 49.76 0.05 0.28 1.00 0.20 -1.34 3.11 -6.32 -20.68 -13.24(36.24) (98.96) (99.72) (99.00) (99.80)

WMnoise
92.00 99.00 100 95.83 100 0.09 24.05 2.80 0.20 22.00 -0.94 3.79 -6.32 -23.82 -15.20(91.91) (74.95) (97.20) (95.63) (78.00)

WMunrelated
96.00 98.00 94.00 100.00 99.00 9.28 60.72 50.52 22.40 0.00 -3.12 4.31 -6.10 -23.00 -14.28(86.72) (37.28) (43.48) (77.60) (99.00)

WMmark
87.00 99.00 98.00 22.46 100 11.54 5.62 3.06 1.03 0.68 -1.32 2.22 -4.58 -44.16 -9.20(75.46) (93.38) (94.94) (21.44) (99.32)

WMabstract
89.00 99.00 98.00 100 100 28.00 32.00 17.00 61.00 0.00 -1.76 1.63 -5.88 -23.20 -16.46(61.00) (67.00) (81.00) (39.00) (100)

WMadv
75.00 91.00 98.00 100 100 34.00 12.00 6.00 30.00 7.00 -1.38 -0.22 -4.74 -22.64 -11.94(41.00) (79.00) (92.00) (70.00) (93.00)

WMpassport
94.00 0.00 0.00 4.00 15.00 5.00 6.00 10.00 48.00 1.00 -9.66 -9.63 -21.12 -34.56 -23.34(89.00) (-6.00) (-10.00) (-44.00) (14.00)

WMencoder
98.00 100 100 100 100 10.00 2.30 11.80 0.50 1.00 -2.00 5.86 -6.48 -23.54 -15.44(88.00) (97.70) (88.20) (99.50) (99.00)

WMexp
70.00 98.00 98.00 100 100 0.00 0.00 2.00 0.00 0.00 -1.56 4.13 -9.04 -22.64 -12.38(70.00) (98.00) (96.00) (100) (100)

DeepSigns 93.00 100 99.00 100 100 5.00 2.00 7.00 1.00 0.00 -2.92 2.37 -4.32 -21.48 -12.76(88.00) (98.00) (92.00) (99.00) (100)

WMentangled
100 100 99.93 95.31 98.05 100 32.03 12.08 1.34 0.00 -0.90 3.44 -4.88 -25.14 -15.64(0.00) (67.97) (87.86) (93.97) (98.05)

TABLE 17: Trigger set recalls of Mwm after ambiguity attacks. Numbers in parentheses denote the differences of trigger set
recalls between A and O.

A’s Trigger Set Recall (%) O’s Trigger Set Recall (%) ∆Test Acc. (%)

MN GT C10 TI C100 MN GT C10 TI C100 MN GT C10 TI C100

WMcontent
100 98.00 100 100 100 82.94 0.00 2.04 1.00 0.80 -0.52 -1.68 -3.76 -19.34 -10.64(17.06) (98.00) (97.96) (99.00) (99.20)

WMnoise
100 98.00 100 100 100 0.21 59.19 3.60 2.20 45.60 -0.44 -2.15 -4.02 -22.34 -11.62(99.79) (38.81) (96.40) (97.80) (54.40)

WMunrelated
98.00 100 100 99.00 97.00 99.76 100 95.26 54.60 0.00 -1.08 -0.51 -4.10 -22.80 -11.08(-1.76) (0.00) (4.74) (44.40) (97.00)

WMmark
100 100 100 100 94.00 11.57 5.10 2.32 0.66 0.90 -0.82 1.06 -2.18 -23.24 -6.54(88.43) (94.90) (97.68) (99.34) (93.10)

WMabstract
100 100 100 100 100 41.00 35.00 24.00 65.00 2.00 -1.02 2.26 -3.90 -21.18 -11.62(59.00) (65.00) (76.00) (35.00) (98.00)

WMadv
100 100 100 99.00 100 23.00 70.00 8.00 31.00 11.00 -0.84 -1.33 -2.90 -21.88 -8.36(77.00) (30.00) (92.00) (68.00) (89.00)

WMpassport
100 48.00 0.00 0.00 41.00 7.00 34.00 19.00 60.00 2.00 -0.36 5.24 -11.12 -33.12 -17.62(93.00) (14.00) (-19.00) (-60.00) (39.00)

WMencoder
100 99.00 100 98.00 100 9.67 2.55 12.60 0.80 1.80 -1.28 -1.08 -3.82 -20.22 -11.76(90.33) (96.45) (87.40) (97.20) (98.20)

WMexp
48.00 0.00 100 97.00 0.00 1.00 0.00 2.00 0.00 0.00 -1.34 2.34 -3.56 -21.16 -9.40(47.00) (0.00) (98.00) (97.00) (0.00)

DeepSigns 100 100 100 100 98.00 10.00 3.00 6.00 0.00 1.00 -1.28 0.67 -2.68 -19.62 -8.40(90.00) (97.00) (94.00) (97.00) (97.00)

WMentangled
100 99.00 97.00 98.00 99.00 99.93 75.78 52.02 8.04 35.68 -13.58 3.14 -5.38 -30.46 -15.52(0.07) (23.22) (44.98) (89.96) (63.32)

8

REFERENCES

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and
Joseph Keshet. Turning your weakness into a strength: Water-
marking deep neural networks by backdooring. In Proceedings of
the USENIX Security Symposium, pages 1615–1631, 2018.

[2] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep
neural network ownership verification: Embedding passports to
defeat ambiguity attacks. In Proceedings of the Advances in Neural
Information Processing Systems, pages 4716–4725, 2019.

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. In Proceedings of
the International Conference on Learning Representations, 2015.

[4] Jia Guo and Miodrag Potkonjak. Watermarking deep neural
networks for embedded systems. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pages 1–8, 2018.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proceedings of the International Conference on
Learning Representations, 2015.

[6] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How
to prove your model belongs to you: A blind-watermark based
framework to protect intellectual property of DNN. In Proceedings
of the Annual Computer Security Applications Conference, pages 126–
137, 2019.

[7] Dongyu Meng and Hao Chen. MagNet: a two-pronged defense
against adversarial examples. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 135–147, 2017.

[8] Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. Adversarial
frontier stitching for remote neural network watermarking. Neural
Computing and Applications, 2019.

[9] Ryota Namba and Jun Sakuma. Robust watermarking of neural
network with exponential weighting. In Proceedings of the ACM
Asia Conference on Computer and Communications Security, pages
228–240, 2019.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:
Convolutional networks for biomedical image segmentation. In
Proceedings of the International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pages 234–241, 2015.

[11] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deep-
Signs: An end-to-end watermarking framework for ownership
protection of deep neural networks. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 485–497, 2019.

[12] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understand-
ing adversarial training: Increasing local stability of neural nets
through robust optimization. CoRR, abs/1511.05432, 2016.

[13] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind,
Wenda Wang, and Russell Webb. Learning from simulated and
unsupervised images through adversarial training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2107–2116, 2017.

[14] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao. Neural Cleanse:
Identifying and mitigating backdoor attacks in neural networks.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
707–723, 2019.

[15] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph.
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intellectual
property of deep neural networks with watermarking. In Proceed-
ings of the ACM Asia Conference on Computer and Communications
Security, pages 159–172, 2018.

	Target Watermark Schemes
	Embedding Meaningful Content (WMcontent) or Noise (WMnoise) into Images
	Using an Unrelated Class of Images (WMunrelated)
	Embedding a Message Mark into Images (WMmark)
	Using a Set of Abstract Images (WMabstract)
	Watermarking via Adversarial Training (WMadv)
	Embedding Passports into DNNs (WMpassport)
	Synthesizing Watermark Images with an Encoder (WMencoder)
	Training with Exponential Weighting (WMexp)
	Implanting a Random Trigger Set (DeepSigns)

	Adaptive Attacks
	Superimposing One Image onto Another
	Collecting Images from the Distribution

	Experimental Results Different to Previous Studies
	Adversary with Fewer Data
	Expanded Tables
	Effect of Auxiliary Sets
	References

